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Abstract: The need for contextually rich educational environments in construction engineering and management calls for the develop-
ment of situational simulations. Situational simulations emulate real processes and provide temporally dynamic clinical exercises that
expose participants to rapidly unfolding events and the pressures of decision making. A survey of simulations of construction management
processes and construction operations shows that commonly used discrete event simulation paradigms are unsuitable for representing
actions and events in interactive general purpose situational simulations for the construction domain. Instead, this paper argues that a
definition of the situational environment using the semantics of constraint satisfaction and an interval representation of time is more
appropriate for representing activities, events, actions, and situations relevant to the construction domain. This paper also illustrates how
this new paradigm facilitates the implementation of a reasoning mechanism that can be used by a software agent to perceive present
actions and predict the future evolution of a simulated environment.
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Introduction

Traditional construction education follows the Cartesian view of
mind–matter dualism where the learner and the learning context
are detached. As a result, concepts are presented as fixed, well-
structured, independent entities and classroom activities are dis-
connected from authentic context resulting in fragmentation and
specialization of courses and educational experiences. This frag-
mentation of knowledge has been identified in the construction
domain (Chinowsky and Vanegas 1996; Fruchter 1997) and is
partially responsible for the polarization of learner and learning
context.

This understanding has led researchers to explore alternatives
in construction education using gaming and simulation environ-
ments such as Superbid (AbouRizk 1993), STRATEGY (McCabe
et al. 2000), ICMLS (Sawhney et al. 2001), and VIRCON (Jaafari
et al. 2001). Some of these programs have been inspired by earlier
research projects such as CONSTRUCTO (Halpin and Woodhead
1970) and AROUSAL (Ndekugri and Lansley 1992). These efforts
have provided a stepping stone towards creating participatory,
contextually rich educational environments.

Rojas and Mukherjee (2003b) argue that situational simula-
tions can be effectively used in developing contextually rich edu-

cational environments to train decision makers in construction.
They can emulate real construction management processes and
provide temporally dynamic clinical exercises that expose partici-
pants to rapidly unfolding events and the pressures of decision
making. As the participant reacts to critical simulated situations,
the simulated environment responds to their manipulations by
challenging them to use their knowledge and skills to experiment
and solve problems in a dynamic setting where conditions con-
stantly change in response to their actions.

Rojas and Mukherjee (2003b) have further gone on to describe
the conceptual framework, which provides the foundation for the
Virtual Coach. The Virtual Coach is a general purpose situational
simulation for the construction engineering and management do-
main. The conceptual framework consists of a process model, a
product model, and an information model. The product model of
the simulation represents the constructs and the visualized infor-
mation in the simulated environment (Rojas and Mukherjee
2003c). The information model encompasses information about
the project that is being simulated. The information is coded into
databases and knowledge bases. While the database has informa-
tion about the “As-Planned” execution of the project, the knowl-
edge base has knowledge about actions and events specific to the
context of the construction project being simulated. Rojas and
Mukherjee (2003a) explain the flow of information in the situ-
ational simulation. The process model is defined by constraints,
dependencies, attributes, and events. Rojas and Mukherjee
(2003b) further go on to develop a set of equations, which can be
used to model construction management processes. In this paper,
the writers introduce semantics to represent and reason about ac-
tions, events, and situations in situational simulations such as the
Virtual Coach.

In Rojas and Mukherjee (2003b) the authors have also argued,
that in comparison to other situational simulation platforms like
AROUSAL (Ndekugri and Lansley 1992) and CONSTRUCTO
(Halpin and Woodhead 1970), the Virtual Coach platform not
only simulates construction management processes but also has
the capability to simulate a very diverse set of events, dealing

1Assistant Professor, Dept. of Construction Management, Univ. of
Washington, 116 Architecture Hall, Seattle, WA 98195-1610. E-mail:
er@u.washington.edu

2Graduate Student, Dept. of Civil Engineering, Univ. of Washington,
116 Architecture Hall, Seattle, WA 98195-1610. E-mail:
amlan@u.washington.edu

Note. Discussion open until June 1, 2005. Separate discussions must
be submitted for individual papers. To extend the closing date by one
month, a written request must be filed with the ASCE Managing Editor.
The manuscript for this paper was submitted for review and possible
publication on October 10, 2003; approved on April 2, 2004. This paper
is part of the Journal of Computing in Civil Engineering, Vol. 19, No.
1, January 1, 2005. ©ASCE, ISSN 0887-3801/2005/1-1–XXXX/$18.00.

JOURNAL OF COMPUTING IN CIVIL ENGINEERING © ASCE / JANUARY 2005 / 1

  PROOF COPY [CP/2003/022472] 007501QCP  



  PROOF COPY [CP/2003/022472] 007501QCP  

  PRO
O

F CO
PY [CP/2003/022472] 007501Q

CP  
with bad weather, labor management, space management, mate-
rial allocation, and equipment management, within a general pur-
pose framework, and an interactive user interface; challenging the
participants to complete the project within limitations of budget
and time in the face of critical events.

In order to come up with a situational simulation environment,
which is general purpose in nature, we chose the semantics of
temporal representation and constraint satisfaction. The following
sections explore the reasons for this choice in more detail. A high
level intuition is as follows: First, almost any problem that can be
quantified can be expressed as a constraint satisfaction problem or
a problem that can be solved by searching for an appropriate
solution from within a given finite sample space. Second, the
axioms of time being universal and verifiable, temporal reasoning
can apply to formal systems across a very wide range of prob-
lems. In this paper, formal semantics are introduced for represent-
ing and reasoning about actions, events, and activities in a general
purpose situational simulation using concepts of constraint satis-
faction and interval temporal reasoning (Allen and Ferguson
1994). While this research was motivated by the development of
the Virtual Coach in specific, it has implications in the future
development of general purpose situational simulation environ-
ments for the construction domain in general.

Simulations in Construction

A survey of simulations in construction engineering and manage-
ment suggests that these can be classified using three different
approaches. The first approach classifies simulations based on
whether they are simulating construction management processes
or construction operations. The second approach to classifying
simulations is based on whether they are of a special purpose or a
general purpose in nature. Special purpose simulations are re-
stricted in scope to particular operations like tunneling or a par-
ticular management process like bidding. General purpose simu-
lations allow for greater flexibility of scope since they are
programmable.

The third approach to classifying simulations can be based on
how interactive they are. Situational simulations are temporally
dynamic and interactive in nature. In their simplest form, simula-
tions of construction processes use a set of initial conditions and
parameters, and a well-defined model to project outcomes regard-
ing a simulated operation. For example, given information regard-
ing the availability of trucks and loaders, their unit costs and the
amount of earth to be moved, a process simulation would be able
to project the total time and cost for an excavation operation.
Situational simulations also have a well-defined model and a set
of initial conditions, but as the simulation proceeds the system
generates random events and expects the user to react to such
events. How the simulation evolves is completely dependent on
the underlying process model (Rojas and Mukherjee 2003b) used,
the way the events are generated and user interaction.

Such an interactive simulation is very useful in developing
learning environments in which the participant is capable of ex-
ploring “what-if” scenarios involving construction management
processes. For instance, in a situational simulation of an earth
moving operation participants might be in a situation where they
have to deal with finishing an operation within time and budget
constraints, under the influence of bad weather and a labor strike.
Most of the surveyed construction simulations have very limited
user interactivity.

The Virtual Coach is classified as a general purpose simulation
of construction management processes. The relationship of the

Virtual Coach to other construction simulation environments is
illustrated in Fig. 1. It is also important to notice that research
regarding simulations of construction operations have been mov-
ing from the general purpose to the special purpose, while re-
search regarding simulations of the construction management pro-
cess has progressed in the opposite direction. In order to develop
a general purpose simulation environment, the authors looked at
existing simulation paradigms that have been used in general pur-
pose construction operation simulations. In the next section a re-
view of the existing simulation paradigms in construction is pre-
sented and the case is made regarding why these cannot be used
for the Virtual Coach.

Simulation Paradigms in Construction

Martinez and Ioannou (1999) explain in detail the essence of
construction simulation systems and justify the use of discrete
event simulations for modeling construction operations. They go
on to study the applicability of the activity scanning and process
interaction simulation strategies to construction operations. Gil
and Tommelein (2001) have also discussed the Event Scheduling
paradigm.

Simulation languages such as STROBOSCOPE and CY-
CLONE have for a long time provided a general and special pur-
pose framework for simulating construction operations and con-
struction management processes, with absent or limited
interactivity. They are based on the Activity Scanning simulation
paradigm, which treats activities and events as time points, and do
not include any temporal reasoning.

Activity scanning simulation models are based on a set of
“activities” each of which has a set of defined conditions and
outcomes. Using a simple example, the “activity” in this context
typically represents a single construction task and a construction
operation can be simulated by a sequence of such activities.
Hence, an earth moving operation can be represented by the ac-
tivities: PushLoad, BackTrack, Haul, DumpAndSpread, and Re-
turn, each of which has a condition and an outcome (Martinez
and Ioannou 1999). An activity cannot occur if the condition is
not fulfilled and when it occurs it always produces the predicted
outcome. This scheme provides a way of representing simple net-
works, which describe the relationships between the activities,
conditions, and outcomes using directional arcs. The direction of

Fig. 1. Relationship between virtual coach and other construction
simulation environments
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the arcs goes from condition to activity to outcome. Such net-
works are referred to as activity cycle diagrams (ACDs). The
major languages used for modeling construction simulation,
namely CYCLONE and STROBOSCOPE, both use ACDs.

In discrete event models, like the ACD, discrete items change
state as events occur in the simulation. The state of the model
changes only when those events occur. The passing of time has no
direct consequences. The advance of simulated time is hence a
progression from event to event and often the temporal distances
between these events are unequal. This representation paradigm
creates problems in effectively representing multiple parallel
events, which span over intervals of time.

Typically, events in the construction domain span over inter-
vals of time and often more than one event occurs concurrently. If
in the middle of a project there were n parallel construction ac-
tivities in progress, the discrete event simulation paradigms would
be limited in their ability to express more than one event at the
same time; especially if the events have different durations. Rea-
soning about activities and events, which overlap in time and
have temporal dependencies is also very difficult to express using
the time-point approach in discrete event simulation paradigms.
Using an interval representation of time allows for a successful
representation of parallel events and the temporal relationships
between activities and events, beyond start-to-finish relationships.
In a subsequent section a formal comparison of time point repre-
sentation and time interval representations in the construction do-
main is explored.

The Virtual Coach is a cycle-based simulation. Time, in the
simulation, advances in equal contiguous increments. Events are
represented by intervals, which are bounded by time points. As-
sertions about the simulation hold true over intervals of time, and
the intervals of time are related to each other by semantics of
interval temporal logic as propounded by Allen and Ferguson
(1994). Finally, in developing a general purpose, simulation para-
digm it is necessary to be able to represent and reason about
broad classes of problems. The following section broadly classi-
fies problems in the construction domain into constraint satisfac-
tion and planning.

Construction Management Problem

Simulations are based on theoretical abstractions of the real life
processes they emulate. The understanding of complex real life
problems at the highest level starts with such abstractions. Disso-
ciating detail from the underlying thread of reasoning can theo-
retically derive abstractions for processes. Similarly, the abstrac-
tion presented in this section is a first step at understanding the
common threads of reasoning underlying the general class of con-
struction management processes. It allows for the theoretical clas-
sification of problems in the construction domain, and is a step-
ping stone to developing a general purpose framework, which can
handle a diverse set of problems within the construction domain.
In the authors’ quest for an abstraction of processes in the con-
struction management domain, a hypothetical problem solver and
a hypothetical agent are used.

An agent can perceive its environment through sensors and
can act upon that environment through effectors (Russell and
Norvig 2002). Agents are attributed a notion of intelligence. They
can reason logically and act autonomously (free of human con-
trol) towards a goal. They are aware of the repercussions of their
actions on the environment and dynamically integrate their expe-
riences into existing reasoning mechanisms. In the computer me-

diated simulation domain there can be two kinds of agents: soft-
ware agents (programs) and humans (interacting with a computer
mediated environment). The human agent is henceforth referred
to as the Participant.

A problem solver is a component of an agent (Talukdar, pri-
vate communication 1998). Problem solvers perceive problems in
the environment and solve them using a set of defined tools.
While the problem solver allows the abstraction of classes of
problems involved, the notion of intelligence in the agent allows
the grasp of the underlying threads of reasoning in the world of
construction. The problems in the preplanning and the implemen-
tation phases of a construction project are investigated next.

A state is a discrete structured representation of a problem.
The set of all possible states defines the state space. The state
space is finite. Search based problem solvers return a sequence of
state transformations, which will allow an agent to transform an
initial state to a goal state. The sequence of state transformations
is arrived at using a goal test function that returns an index, which
indicates how close a particular state is to the goal state. Such a
sequence is generated by algorithms, which search the state space
at every step to locate the state, which takes it closest to the goal
state.

In context, to solving a problem, which deals with creating a
construction plan, the state space consists of all possible partial
and complete activity schedules. The initial state is an empty
schedule and the goal state is the resource-loaded schedule. Suc-
cessor functions are programs that allocate resources to activities
from a set of available resources, to generate subsequent state
descriptions. Successive states are partial schedules. In a schedule
the activities take time and the resources are associated with
costs. Allocation of resources to the activities is governed by a set
of constraints. The same resources cannot be allocated to more
than one activity simultaneously and only specific activities can
be assigned specific resources. Labor and equipment allocation
should be distributed to achieve optimal cost. Constraints defined
on the ordering of activities are defined as precedence constraints.
The problem formulation, in this case, is to assign resources to all
activities, in keeping with resource and precedence constraints.
This reduces the problem to a constraint satisfaction problem
CSP.

Constraint satisfaction problems deal with the state in greater
detail. The state is defined as a set of variables each of which is
associated with a finite domain. The set of constraints define all
the allowable combinations of values that the variables defining
the state can take up. In the construction domain a state is defined
by a schedule, which is a set of activities. Each activity is defined
by variables, which describe the resources that the activity has
been allocated. The goal test is the satisfaction of a set of con-
straints over a set of variables. The set of constraints are classified
as the precedence constraints and the resource constraints.

The above analysis allows us to conclude that during the pre-
construction phase the problem of creating a resource loaded ac-
tivity schedule, also referred to as the “As-Planned” schedule, is a
constraint satisfaction problem. A search based constraint solver
can solve it. A number of research efforts support this claim.
Succur and Grobler (1996) suggest a CSP formulation for the
construction project planning. They represent a single project
scheduling problem S by the tuple Ss= �� , P ,�� where �=Rl is a
set of resources, P is a representation of the project as a set of
tasks which are represented using time intervals, and � is a set of
agents which go about solving the constraint satisfaction problem.
Such a structure essentially represents a set of precedence con-
straints (which they refer to as temporal constraints) and implicit
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resource constraints. They further go on to illustrate a solution by
using forward-checking constraint propagation algorithms using
pruning and conflict resolution. Hammond et al. (2000) suggest
the use of a partitioned dependency structure matrix to represent
information about a schedule. A closer analysis shows that the
partitioned matrix is a state representation of precedence and re-
source dependencies in a schedule. There exists a finite set of
such matrices for any given project. By reordering the sequence
of design tasks to maximize the number of design tasks below the
diagonal, the DSM software essentially deals with precedence
constraint satisfaction by making state transformations. WorkPlan
(Choo et al. 1999) also uses resource and precedence constraint
satisfaction in the WorkPlan implementation.

During the project implementation phase, project managers
like to stick to the “As-Planned” schedule as it already encodes
the budget and time restrictions that they need to meet. However,
in reality, circumstances seldom permit the “As-Built” schedule to
be identical to the “As-Planned” schedule. Projects get derailed
from the “As-Planned” implementation because of violations in
resource and precedence constraints that define the constraint sat-
isfaction problem in the preconstruction phase.

The next point of investigation is the violation of constraints.
In this context, an action is defined as a trigger that creates a set
of conditions in the construction environment resulting in con-
straint violations. The set of conditions triggered is defined as an
event. This hints at the causal nature of events in the construction
environment. According to Suchman (1967), causality can be ap-
plied when one input appears to imply the occurrence of an out-
put, and a causal relationship can be inferred by analyzing how
input and output are related or associated. Soibelman and Pena-
Mora (2000) claim that Suchman’s model can be applied to a
construction project for intervening in a chain of events in three
different ways: by apprehending and preventing the event from
preconditions (primary intervention), reduction of postconditions
(secondary intervention), and rehabilitation or reduction of future
consequences (tertiary intervention). During the construction pro-
cess, precedence and resource constraints are violated by various
events, which occur in the construction environment. They di-
rectly result in disturbances or violations in precedence or re-
source constraints. An expert construction manager can appre-
hend constraint violations and/or take corrective measures every
time there is one. While the number of possible events that can
occur in the construction environment is probably infinite, it can
be argued that all of them can be expressed as violations of a
closed and finite set of constraints.

An example illustrating the causal nature of events may be
expressed as: “a day of bad weather may create delays in outdoor
activities.” In the construction environment the occurrence of the
action “bad weather” causes a related event defined by a delay.
The result of the delay has cascading effects on the whole activity
network further delaying future activities bound by precedence
constraints. Similarly, there is a direct causal link between the
delay in material delivery and the unavailability of material for
specific activities. Unavailability of material translates to a re-
source constraint violation. The causal links between the effects
of events and their occurrences, and the conditions, which lead to
their occurrences, are formally described in detail in a later sec-
tion in this paper.

The authors argue that the construction management domain is
governed by a set of precedence and resource constraints the vio-
lation of which, during the construction phase, triggers events.
Such events, though specific to the construction environment, are
causal in nature. This suggests that given a language to formally

represent actions, events, and their relation to constraint viola-
tions we can reason about information in a temporally dynamic
construction environment. A hypothetical agent can use such a
representation to autonomously reason about future events and
possible repercussions. This takes the issue to the domain of plan-
ning.

Planning problems make use of problem structure to generate
relevant plans. Unlike search based problem solvers which are
dependent on a specific set of successor functions to affect the
environment, planners have a greater degree of autonomy and can
create plans which are sensitive to context specific information.
To describe the structure, which defines the context, a state de-
scription of the environment is not enough. State descriptions are
discrete and do not allow the expression of multiple relationships
changing simultaneously across time. A formal language is nec-
essary to describe such changes in the environment. The job of an
agent attempting to implement a construction project is to dy-
namically update existing schedules by satisfying constraints,
while being sympathetic to the context in the environment, par-
ticipant interactions, and possible future repercussions. Mean-
while, the participant is in charge of managing the implementa-
tion of the project by looking out for constraint violations, and
taking corrective measures to make sure that the project is com-
pleted despite the constraint violations. The semantics developed
in the next section provide a language, which can be used by the
agent to represent and reason about construction domain events
within a general purpose situational simulation environment.

Formalization of Interval Temporal Logic Model

The first part of this section explores the representation of time
using intervals bounded by time points. The basic axioms of in-
terval temporal logic have been borrowed from the work done by
Allen and Ferguson (1994). We have added some more axioms to
suit representation of activities and events particular to the con-
struction domain. The second part of this section formally defines
the situational simulation environment in terms of variables and
predicates in a way suitable for representation of actions and
events. Finally, the section concludes by formally explaining why
a time interval based representation is more suitable than a time
point based representation.

Notion of Time

Time has no beginning or end. Time is an infinite interval and any
simulation is effectively some finite subset of this infinite interval.
All assertions can be expressed in terms of time. In a temporally
dynamic world, the validity of an assertion is defined by intervals
of time in which it holds true. A universal truth holds over the
infinite interval of time, while an assertion about a spell of low
productivity will only hold over a finite interval of time. This
allows the description of aspects of the environment within a
structure of time. A premature falsification of the assertion is a
shortening of the interval, while extending the associated time
interval can extend the validity of an assertion. A truth assertion
about the availability or requirement of a resource over an inter-
val of time can be used to represent resource constraints. Ending
and starting time points define time intervals. In fact, all intervals
are sets of time points bounded by starting and ending time
points. This structured notion of time allows us to appropriately
represent precedence constraints.
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Time Points and Time Intervals
Time points are always represented by positive integers and rep-
resent instants in the continuum of time. In the situational simu-
lation environment, a time point is defined as the smallest discrete
interval of time within the scope of the simulation and is referred
to as the discrete granularity “p.”

A series of consecutive time points make up a time interval.
Every time interval is associated with an ordered pair of integers.
The integers define the start and end time points of the time
interval. Hence, a time interval i, which stretches from the third
day to the fifth day of the simulation, will map onto the ordered
pair {3,5} where the discrete granularity of the simulation is
1 day. When a time interval represents an activity, the time points
represent the early start and early finish points for the activity

∀i . ∃ J,K . J � K �1�

The interval duration is given by K−J+1

i:�J,K�; i . start = J, i . end = K �2�

The convention followed in this paper is that all time points
are represented in the upper case, while all time intervals are
represented in the lower case.

This model uses an interval representation of time as proposed
by Allen and Ferguson (1994). On the basis of the axiomatic
relations Meets, Before, and After defined on intervals by Allen
and Ferguson, precedence relations between intervals have been
axiomatized to aid representation in the situational simulation do-
main. A diagrammatic representation of the axiomatized time in-
tervals can be seen in Fig. 2. The precedence relations developed
include consequence, coincidence, precedence and concurrence.
A brief review of the relations Meets( ), Before( ), and After( )
follows.

Meets Two time intervals i and j are said to meet if and only if i
precedes j, and yet there is no time between i and j, and i and j do
not overlap. In terms of discrete time points this can be axioma-
tized as

∀i, j . ∃ I,J,K,L . �i = �I,J��

∧ �j = �K,L�� ∧ �J = K − 1�

⇒ Meets�i, j� � i:j �3�

It can be proved from this axiom that a time interval cannot meet
itself. This rules out possibilities of circular models of time.

Before A truth value for Before�i , j�, implies that interval i starts
before interval j and can be expressed as

Before�i, j� � ∃ m . Meets�i,m� ∧ Meets�m, j� � i � j �4�

After The inverse of Before is After, which is defined as

After�i, j� � ∃ m . Meets�j,m� ∧ Meets�m,i� � i � j �5�

Precedence constraints between time intervals representing activi-
ties, actions and events are based on the definitions of the follow-
ing axioms.

Consequence Axiom 1: An interval i is said to be immediately
before another interval j if i precedes j and meets it. Inversely, the
interval j is said to be immediately after the interval i

∀i, j . ImmBefore�i, j� ⇒ �i � j� ∧ �i:j� � ImmAfter�j,i�

⇒ �j � i� ∧ �j:i� �6�

Coincidence Axiom 2: Intervals i and j are said to have a coin-
cident point of beginning if there exists a time interval t which
comes immediately before both i and j. Similarly, if there is a time
interval which comes immediately after two time intervals i and j
then they are said to have a coincident point of ending

∀i, j . Begins�i, j� ⇒ ∃ t . ImmBefore�t,i� ∧ ImmBefore�t, j�

�7�

∀i, j Ends�i, j� ⇒ ∃ t . ImmAfter�t,i� ∧ ImmAfter�t, j� �8�

Precedence Axiom 3: Two time intervals i and j will always have
a finish to start precedence relationship defined by the time inter-
val p.

Combining Eqs. (6)–(8) we get

∀i, j,p . PrecConst�i, j,p� ⇒ �ImmBefore�i,p� ∧ ImmAfter�j,p��

∨ �Begins�j,p� ∧ Ends�i,p��

∀i, j,p . PrecConst�i, j,0� ⇒ i � :j �9�

Concurrence Axiom 4: Given that pnow is the discrete granularity
which represents the current time in the simulation, all time in-
tervals which span across it are said to be concurrent

∀t ConCurrent�t� ⇒ pnow � t �10�

Definitions

Time–Activity Plane
An activity is an emulation of a real life construction operation
and is represented by an interval, which has the same length as its
duration. Activities take time from start to completion. Activity
intervals are dynamic in nature, as activity durations may change

Fig. 2. Axioms defined on intervals
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during the construction process. A construction project being
simulated can be divided into an integral number of discrete time
points of length equal to the discrete granularity p of the simula-
tion. The total number of time points multiplied by the length of
a time point gives the total time of the project.

The time–activity plane (Fig. 3) is a discrete plane defined by
the positive time axis and the positive activity axis. The time axis
increases in the positive direction and represents discrete time
points. Each activity is represented by a discrete unit on the ac-
tivity axis, as an interval in time spanning a set of time points
bounded by the starting and ending time points on the time–
activity plane. Each activity interval is a set of n time points of
length p. The activity–time element is thus the unique ordered
pair �i ,T� on the time–activity plane representing the activity i at
the time point T. The activity–time element is the basic unit of all
information representation in the simulation. The simulation pro-
ceeds from time point to time point. Each element �i ,T� has as-
sociated with it minimum material, labor, and equipment require-
ments for the activity i at the time point T. An activity i is
constrained not to start at the time point T if the minimum re-
quirements associated with the element �i ,T� are not fulfilled.

Environment
The environment sets the scene for the situational simulation. It is
the participant’s perception of the simulated construction project.
It is interactive, temporally dynamic and virtual in nature. The
environment emulates activities, events and processes pertaining
to construction projects. It is characterized by a set of variables,
each of which describes a unique aspect of the environment.

Variable
A Variable is a symbolic representation of an aspect of the simu-
lation environment. There are two types of variables in the envi-
ronment. The first type represents aspects that are defined over
discrete domains. Such variables are used to logically reason
about the environment. The second type of variables is defined
over continuous domains and is used to model the dynamical
behavior of the system.

The discrete variables can only take up values from a discrete
finite domain S= �s1 ,s2 ,s3 , . . . �, which is the set of all possible
attributes of the aspect described by the variable. Every aspect in
the environment is completely defined by the set of attributes S.
Hence, every variable maps on to a unique domain. A set of
variables completely characterizes the environment. Precedence
and resource constraints are relationships between the variables

and determine the values taken up by the variables. The environ-
ment �E� being a composition of the entities is expressed as a set
of the variables defining its entities

E = ��1,�2,�3, . . . ,�n� �11�

where domain of

�i = S��i� = �s1,s2,s3, . . . ,sk� �12�

In Eqs. (11) and (12), the symbol �i=a variable which describes
the aspect �i in the environment. There is a closure on the set of
discrete variables in the environment. Hence, as the simulation
proceeds, the variables may take up different attributes from the
domain, but new variables may not be added to the set.

A combination of n such variables completely defines the
simulation environment, as expressed in Eq. (12). As the environ-
ment changes, variables take up different values from their do-
mains to reflect the change. This information is expressed through
Boolean predicates, which state the truth regarding time intervals
over which variables hold particular values. The truth that the
entity represented by the variable �i has the attribute value s1 over
the time interval t is represented by the predicate

�i�s1,t� �13�

For example, the aspect Weather may be represented by the vari-
able weather, which could take values from the domain [sunny,
rainy, snowy]. The predicate weather�sunny, t� signifies that the
weather in the environment will hold sunny over the time interval
t. Reasoning in the environment uses conditions, which are con-
junctive clauses (a conjunctive clause is a first-order logically
ANDed expression of simple logical predicates). Hence, the con-
dition representing snowy weather and null productivity over the
interval t is represented by the sentence

weather�snowy,t� ∧ prod�null,t� �14�

Variables are homogeneous over the time intervals in which they
hold. Unless otherwise altered, it may be assumed in the above
example that the weather will hold snowy for the entire interval t.

The set of variables, which are defined over continuous do-
mains, encode information about the quantities (number of units)
of resources that activity intervals use/require. These variables
can also be expressed as predicates that hold representative values
over intervals of time. They are not used for logical reasoning, but
as parameters, which pass numerical information to the math-
ematical model. These variables are used to calculate derived
variables such as remaining duration, direct costs and production
rate.

Variable Classification
Entities in the environment, as represented by variables, are often
specific to the context of certain activities. This calls for a classi-
fication of variables in the environment. All variables that de-
scribe aspects of particular activities are activity specific vari-
ables; all variables that describe aspects relevant to the whole
time–activity plane are global variables. For example, weather is
a global variable since its effects can be felt across activities.
However, the availability of an exclusive material or a certain
piece of equipment is specific to that particular activity. For ex-
ample, the unavailability of earth-moving equipment will not af-
fect a concrete pouring operation, even though it will delay a
concurrent earth moving operation. All discrete variables are col-
lectively referred to as environmental variables. All of them can
also be classified as activity specific variables or global variables.

Fig. 3. Worlds and subworlds in activity–time plane
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It is possible for more than one concurrent activity to have

instances of the same variable with differing values at the same
point of time. For example, the labor efficiency for an activity
might be 100%, while that of a concurrent activity may be 80%.
Thus, the activity specific variable representing labor efficiency
can take up two different values in two different contexts at the
same time. We define contexts as dynamic time intervals identical
to the activity intervals. For all intents and purposes, the contexts
are set by activities. Activity specific variables are always in con-
text to the activity, which they define, and at any point of time
there can be multiple instances of the same activity specific vari-
able, each in context to a different activity. However, within the
same context no variable can have multiple instances, as that
would mean an entity having more than one attribute at the same
time. This understanding is the basis for the formal definition of
activity specific variables as variables, which can have multiple
instances across contexts at the same time, and global variables
as variables, which can only have a single instance across all
contexts at any point of time.

The variables, which are defined over continuous domains, are
all context specific variables. With respect to the mathematical
model (Rojas and Mukherjee 2003b), they are independent vari-
ables, which are passed as parameters to functions, which com-
pute the derived, or dependent variables (Rojas and Mukherjee
2003c). Continuous variables are used to model the dynamical
behavior of the system and are referred to as independent vari-
ables. A more detailed description of their behavior is beyond the
scope of this paper.

World
A world is a snap shot of the environment at a specific time point
t, as shown in Fig. 3. The time point is the granularity of the
simulation and is usually represented as a day. Progress from day
to day in the real world translates to progress from time point to
time point in the simulation. The simulation thus moves from one
world to the next. Symbolically, the world at the time point T is
denoted by W�T� which is given by the set of all variables defin-
ing the environment at that time point

W�T� = �E�T �15�

Subworld
The set of all variables in the environment, which belong to the
same context, is defined as a subworld. The subworld is therefore
a subset of the world where all the variables are specific to a
particular activity that defines the context, as shown in Fig. 3. For
the context defined by the activity interval i the subworld at the
time point t is the set of m variables which describe entities in the
activity and is denoted by

W��i� = ��i1,�i2, . . . ,�im� � �E�T �16�

At any time point t, if the ongoing activity intervals defining the
concurrent contexts are i , j ,k, then the set of environment vari-
ables is given by

W�T� = �W��i� � W��j� � W��k�� + W���� �17�

and W���� is a uniquely defined pseudocontext for global vari-
ables

W���� = Set � of � Global � Variables �18�

Actions, Events, and Situations in Situational Simulations
Temporal logic is also used to expressively represent actions,
events, and situations. Actions are triggers, which create events
and situations. Some examples of outcomes of actions are bad
weather, material delivery, reallocation of resources, labor strikes,
etc. In the simulation environment actions occur instantaneously
in time, at the starting time point of the interval of the event they
trigger.

Events reflect the effects of real life episodes on resource and
precedence constraints within the construction domain. All events
span over time intervals. Each event is associated with three sets
of variables: the Pre-Condition set, the Event Condition set, and
the Consequence set and is triggered by a unique action. Member
variables of the event condition and precondition sets are identi-
cal. However, the variables in the two sets must have different
attribute values. The change in attribute values is triggered by
actions. The event is reflected by the event condition set of vari-
ables. Future effects of the event are captured in the consequence
set, which is a set of assertions about values of variables in the
future. The compound predicates Pre�Cond�t�, Event�Cond�t�,
and Consequence�t� are conjunctive clauses of simple predicates
which assert attributes of the member variables over the time
interval t during which the conditions specified by the precondi-
tion, event condition, and consequence sets hold, respectively.
They are also homogeneous over the time intervals in which they
hold. For example, in the event of a labor strike that lasts for the
time interval t, productivity (represented by the variable prod) for
all activities is reduced to 0 due to a 0% availability of labor
(represented by the variable labor). In this case, the event condi-
tion set is �labor�null , t� , prod�null , t�� across all activity con-
texts. The precondition set is �labor�	 
0% , t�� , prod�	 
0% , t���
and the predicate Meets�t� , t� is true. This event represents a vio-
lation in a resource constraint. The action to create the labor strike
event can only be taken if the precondition set is fulfilled in the
immediately previous time point. This is expressed as

∀t . Act � Labor � Strike�t . start� ⇒ ∃ t� . labor�	 
0%,t�� ∧ prod�	 
0%,t,� ∧ Event�Labor � Strike,t� ∧ ImmBefore�t�,t� �19�

The fact that the precondition set is a necessary condition for an action to occur and that every action triggers an event is used to
axiomatize the definition of an action as

∀t . Action�t . start� ⇒ ∃ e,t� . Pre � Cond�t�� ∧ Event�e,t� ∧ ImmBefore�t�,t� �20�

The converse of the above axiom does not hold, however, if the precondition set holds, then it may be concluded that the action may
potentially be taken. This is axiomatized as

Axiom 5: A specific action can be predicted to potentially occur at T+1 if for all contexts concurrent at both T and T+1 there exists
at least one context i such that W��i� at t has a subset of variables which satisfy the precondition set of the action.
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Consequences of an event are assertions about the future that are direct outcomes of the event. The consequence set is a set of variables

that assert attributes of entities in a future time interval, which is directly affected by the occurrence of the event. For example, in the case
of the event Labor�Strike, the productivity of all activities may take a while to recover, and continue to be at 50% for the time interval t�
immediately after the Labor�Strike event is over. The time intervals t and t� are tied by the precedence constraint predicate. Hence, the
labor strike event may be defined in first order predicate logic as:

∀t . Event�Labor � Strike . t� ⇒ ∃ t� . labor�null,t� ∧ prod�null,t� ∧ prod�0.5,t�� ∧ PreConst�t,t�,0� �21�

This allows the generalization of the definition for an event as

∀e,t Event�e,t� ⇒ ∃ t�,p Event � Cond�t� ∧ Consequence�t�� ∧ PrecConst�t,t�,p� �22�

Information about actions and events is stored in a knowledge
base and is based on the event and action definitions discussed
here. If the precondition and event condition sets of variables for
an event belong to the same context, then the event is specific to
a particular context and is effectively an activity or context de-
pendent event. However, if the precondition and event condition
sets of variables are global variables only, then the event is a
global or independent event. For example, because weather is a
global variable, an event related to it will be a global event. By
definition variables in the event condition and precondition sets
have to be either global or context specific. They cannot be
mixed. The consequence set may, in both cases, still have vari-
ables from across activity contexts. Situations are events that re-
sult in immediate constraint violations and demand immediate
user intervention to carry on with the simulation. All events may
not create immediate constraint violations, and hence may not
create situations.

Participant Interactions and Agent Actions
Participants interact with the environment by changing values of
the variables. However, participants can interact only with vari-
ables within their jurisdiction. By changing the contexts of re-
source variables, participants can reallocate resources between ac-
tivities. Global variables are beyond their control (e.g., the
participant cannot change the weather). Access is limited to con-
text specific variables, which describe the resource requirements
of the activities.

Software agents have greater access to variables than the par-
ticipants do. The agents can access all global and context specific
variables. However, in taking actions that affect the environment,
agents are not allowed to change eternal truths about the environ-
ment (e.g., an agent cannot change the attribute of an excavation
activity from outdoor to indoor). All agent actions are essentially
operators, which transform a set of preconditions to a set of event
conditions. Because participant interactions are limited within the
environment, they cannot directly create events in the environ-
ment. However, they can do so indirectly. For example, a reallo-
cation of resources might result in resource constraint violations
which, when perceived by the agent, will indirectly create events.
Hence participant interactions can only create the Pre�Cond( ) set,
but only agent actions can transform a Pre�Cond( ) set to a
Post�Cond( ) set.

Interval versus Time Point Representation

The axioms and definitions described so far have been based on a
representation, which uses time intervals rather than time points.
Time intervals can be represented as a series of time points and

the simulation itself traverses from time point to time points. This
section uses the constructs of finite state machines to justify the
use of intervals over time points.

The situational simulation can be looked upon as a finite state
machine (FSM), which is defined as a model of computation con-
sisting of a set of states, a start state, an input alphabet, and a
transition function that maps input symbols and current states to
successive states. It can be described by the tuple

M = 	S,I,R,L
 �23�

where S=finite set of states; I�S=set of initial states; R�S
�S=transition relation, specifying the possible transitions from
state to state; and L=function that labels states with the atomic
propositions from a given language. Such a tuple is called a
Kripke structure.

States in the situational simulation environment are expressed
using sets of variables. The two sets of variables defined so far are
the world set W�T�, which characterizes the environment at each
time point, and the subworld set W��i�, which characterizes the
environment in terms of intervals, over the activity context i.
Closure on the set of variables and the attribute domains limits the
number of possible worlds and subworlds to a finite number. W
denotes the set of all worlds. If there are n variables, each of
which can take up at most m attributes, then the cardinality of the
set W is at most nm. In reality the number is lower, because there
will be many worlds which are mathematically accountable but
absurd in reality.

The set of all possible subworlds specific to the activity con-
text i can be expresses as Wi. This set does not completely define
the activity environment, because it leaves out the global vari-
ables. However, if we augment it with the set of global variables,
then we get a set of states that completely defines the context.
This is denoted by Wi

+

W+�i� = W��i� + W���; W��i� � Wi �24�

Wi
+ = �W+�i�� �25�

W+�i�=augmented subworld; W and Wi
+ are equivalent to S in the

Kripke structure; and W�T� �W�T��W� corresponds to an initial
state defined on a time point. Similarly, W+�i�=initial state de-
fined on the context interval i.

An action in the environment creates transitions in state. Dif-
ferences between attributes of variables in the precondition and
event condition sets of an event triggered by an action indicate a
transition in state. The critical question is, do the actions create
changes in states defined in W or in Wi

+?
Actions creating dependent events operate on variables spe-

cific to the context specific subworld. Actions creating indepen-
dent events operate on the set W���. Since the set of variables in

8 / JOURNAL OF COMPUTING IN CIVIL ENGINEERING © ASCE / JANUARY 2005

  PROOF COPY [CP/2003/022472] 007501QCP  



  PROOF COPY [CP/2003/022472] 007501QCP  

  PRO
O

F CO
PY [CP/2003/022472] 007501Q

CP  
the subworlds have been augmented with the global variables,
independent events are essentially multiple instances of the same
action across all contexts. Hence, actions creating context depen-
dent and independent events can create state transitions in Wi

+.
This representation allows multiple state changes to occur in the
environment, each in a different context, at any point of time. In
other words, an interval representation allows simultaneous con-
text dependent events across different activity contexts without
breaking the semantic structure.

It is very difficult to define unique state change actions as
operators on W, without breaking the semantic structure. Only
actions triggering independent events can be expressed as state
transitions. Simultaneous context specific dependent events can-
not be expressed within W using the defined action-event seman-
tics. Hence, state transitions defined by actions are best suited for
the set of states Wi

+ defined on Subworlds that are based on an
interval representation of time.

The Kripke structure that can be defined for the context i in the
simulation environment is

M = 	Wi
+,I,R,L
 �26�

where

I = W+�i�

R � Wi
+ � Wi

+ �27�

L � Set � of � all � Events �28�

In effect we have a FSM for each context allowing simultaneous
activities and events; actions serving the purpose of state transi-
tion operators and events providing a language to express changes
in state. This is the rational behind using an interval representa-
tion of time.

Tambe et al. (1995) argue that FSM languages are too restric-
tive to represent human like intelligence. Similarly, time-point
representation based FSM languages are inadequate for reasoning
about the real life nature of the parallel events in the construction
domain. Even though such an approach was used for developing
situational simulations in the air-combat domain (Tambe et al.
1995), parallelism and simulation of multiple fighter planes was
achieved through DIS technology by running multiple copies of
pilot agents participating in battlefield simulations (ModSAF:
Calder et al. 1993). In essence they were running multiple FSMs
in parallel.

Agent Reasoning

In this section a reasoning mechanism is introduced. This mecha-
nism can be used by a software agent to perceive present actions
and predict the future evolution of the simulation environment
based on the definition of the simulation environment and the
interval temporal reasoning.

The agent comes into play between every consecutive discrete
time point in the simulation (between any two consecutive “days”
during the simulation of the project). The agent infers after the
time point T and before the time point �T+1�. Given the knowl-
edge of the environment in terms of variables at the end of the
time point T and a set of assertions about the environment, the
agent can identify the events, which were triggered due to user
interaction during the time point T and predict the outcomes of
such present events in the future. Furthermore, by identifying the

existing conditions, the agent can suggest a list of actions to the
event generator to appropriately create situations in the environ-
ment.

In its inference environment, the agent has complete access to
information encoded in terms of sets of variables W�T� and
W�T−1�. Since subworlds cannot change state during the infer-
ence process, the agent’s inference environment is static. It is also
discrete, since there are a finite number of possible states that a
subworld can take. The environment is also nonepisodic, because
the agent needs information from W�T� and W�T−1�. Finally,
from the agent’s point of view, the environment is nondetermin-
istic, as it cannot predict all user interactions or event generator
decisions in the immediate future.

It may be noted here that for every event, the set of event
conditions may be referred to as the postcondition set for the
action triggering the event. The precondition set of the action and
event are identical. The following assumptions of closure can also
be made:
1. Event closure: An occurrence of an event implies that an

action occurred. This is expressed as

∀e,t . Event�e,t� ⇒ ∃ Action�t . start� �29�

2. Attribute closure: This reflects a closure on the attributes and
variables and implies that any change in attributes of vari-
ables implies that an event has occurred. This is expressed as

∀t,t� . Pre � Cond�t�� ∧ Post � Cond�t� ∧ Meets�t�,t�

⇒ ∃ e Event�e,t� �30�

On the basis of the definition of an action [Eq. (20)], definition of
an event [Eq. (22)], variable unification (variables unify when
they both describe the same entity and take up the same attribute
value, two sets of variables unify when there is a one-to-one
unification between the members of the sets) and the assumptions
of closure [Eqs. (29) and (30)], the following theorem can be
stated:

Theorem: A specific action can be inferred to have occurred
in between time points �T−1� and T if for all contexts concurrent
at both �T−1� and T there exists at least one context i such that
W��i� at �T−1� has a subset of variables which unify with the
precondition set of the action and W��i� at T has a subset of
variables which unify with the postcondition set of the same ac-
tion.

Given a context i for which there exists sets S and S� which
unify with the precondition and postconditions sets of the same
action at �T−1� and T, respectively, it is required to prove that
there was an Action�T�.

Proof: We know that S�W��i� at �T−1� and S��W��i� at t.
By definition, the member variables of S and S� are identical but
have different attribute values. Let us assume that S and S� are
homogeneous over time intervals m and n. A change in the values
of variables occurs at �T−1� and at T. Therefore, m .end= �T−1�
and n .start=T. Hence by Eq. (3) we can say Meets�m ,n�.

Now by Eq. (30)

S�m� ∧ S��n� ∧ Meets�m,n� ⇒ Event�e,n� �31�

by Eq. (29)

Event�e,n� ⇒ Action�n . start� �32�

Hence, there was an Action�T�.
Corollary: For every action taken there is a set of assertions,

which predict the future of the simulation environment.
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This is proved because of the fact that every action implies an
event which, in turn, implies a consequence set [Eqs. (20) and
(22)]. Prediction by the agent for possible future actions follows
Axiom 4.

Validation

A theorem prover was implemented for the stated theorem using
the Forward Chaining algorithm (Russell and Norvig 2002).
Given the perceptions of the world in terms of W�T� and W�T
−1�, the agent classifies the variables into subworlds specific to
contexts that are concurrent in both T and T−1. It then isolates all
contexts in which variables have registered changes in attribute
values. Then for each of these contexts, it unifies the variables
with action and event definitions in the knowledge base. All in-
ferences are added as facts to the Assertion set, thus allowing
reasoning in future worlds to be based on perceptions and out-
comes of the past. Fig. 4 illustrates the algorithm.

The implementation was done in Sun Java. The knowledge
base encodes information about defined events using directed
acyclic graphs. The variables and actions represent nodes, while
the edges are represented dependencies between the nodes and are
labeled with the states of the variable. There are no edges between
variable nodes. All edges originate from variable nodes and lead
to action nodes, or originate from the action nodes and lead to
variable nodes. The labels on the edges define the state of the
variable, which shares an edge with an action node. The set of all
variables, which have edges into an action node, form the precon-
dition set of the event triggered by the action. Similarly the set of
all variables, which have edges out of an action node comprise
the postcondition and event condition sets of the event triggered
by the action. Whenever there is a match in the precondition set
of variables of an action with W��i��W�T� (a match entails, that
the variables should also have the same states as the state labels
on the edges into the action node), the event triggered by the
action can either be thrown by the agent or predicted for the
future. If there is a match in the precondition set of variables of an
action with W��i��W�T−1� and a match of the postcondition set
of variables of an action with W��i��W�T�, then the event can be
inferred to have occurred at time point T of the simulation for the
context i.

The implementation of the software agent was done to specifi-
cally test the representation. For a simulation spanning over
20 days or time points, a given set of event definitions and a
random event generator, the implementation was able to detect
and predict events perfectly. Events arising out of consequences
of previous events could also be detected perfectly. That is, when-

ever there was an event it was detected. Also, whenever the pre-
conditions were fulfilled an event was predicted. Finally, more
than one event could be detected and reasoned about on any par-
ticular day, even when the events spanned over different periods
of time.

Given the theoretical model these results are not surprising.
All agent inference and reasoning is done on the basis of asser-
tions about actions and events in a knowledge base of facts. The
inference mechanism is sound and complete within definitions of
actions and events defined in the knowledge base. Hence, if an
action is defined in the knowledge base, then it will always be
predicted every time its precondition set is fulfilled. Also, an
event defined in the knowledge base will always be inferred if it
has occurred. However, if there is a combination of variable at-
tributes, which is not documented in the knowledge base, then
they will simply go unnoticed. Hence, an efficient implementation
of this agent lies in developing an accurate knowledge base of
facts, and creating appropriate closures on participant interaction.

The reasoning introduced in this paper is limited to dealing
with simple conjunctive clauses only. Disjunctions are difficult to
deal with because they often make the problems computationally
intractable. Also, the success of the reasoning mechanism de-
pends upon how accurately the action and event definitions cap-
ture the causal nature of events in the real world. Research is
being conducted to identify appropriate precondition, event con-
dition, and consequence sets so that the environment can appro-
priately simulate the reality of events.

Conclusions

Rojas and Mukherjee (2003b) cite the usefulness of situational
simulation environments as learning environments in other do-
mains and argue that the same can be used in the construction
management domain. In this paper the writers have gone on to
establish that the currently used discrete event simulations para-
digms are unsuitable for developing a general purpose situational
simulation environment for the construction engineering and
management domain. Such paradigms are not appropriate for rep-
resenting and reasoning about multiple parallel events overlap-
ping in time. A survey of construction simulation shows that there
is limited work done in the field of general purpose interactive
simulations.

The contribution of this paper lies in introducing semantics
based on constraint satisfaction and interval temporal reasoning,
which allow the representation and reasoning about actions,
events and situations within a general purpose framework. The
writers have also theoretically validated the representation to be
sound and complete. Events are very important in situational
simulations as they form the crux of the educational experience
that situational simulations are supposed to deliver. Hence, this
work is a stepping stone in aiding the development and applica-
tion of situational simulation environments in construction.

Notation

The following symbols are used in this paper:
∀ � for all;
∃ � there exists;

⇒ � implies;
¬ � negation;
∧ � logical AND; and

Fig. 4. Agent algorithm
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∨ � logical OR.

Further information on First-Order Logic syntax and semantics
can be found at Russell and Norvig (2002).
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