Reasoning about Actions and Events in Situational Simulations Amlan Mukherjee Eddy M. Rojas University of Washington

Overview

- Background
 - Simulations
 - Problem classification
 - Temporal Representation
- Describe our representation in detail
- Show how our representation allows:
 - Representing parallel events
 - Expressing constraint information
 - Capturing causal relationships
 - Reasoning about actions and events

Simulations

Problem Classification in CM Domain

- Precedence Constraints

 Finish to start, start to start, start to finish

 Resource Constraints

 Requirement Availability
 Specification checks

 Events: Constraint Violations

 Rescheduling of activities
 - Reallocation of resources

Time Point Representation

• Events are time points

Our approach to time

i J K $i:{J,K}, i.start = J, i.end = K$

Time Intervals & Time Points

Overlapping Time Intervals

Relating time intervals

Situational Simulation Environment

9/28/04

Variables: $E = \{v\}$

$\checkmark Variables: E = \{v\}$

Discrete Variables $D = \{v_d\} \subset E$ $v_d \in \{s_1, s_1 \dots s_n\}$ \downarrow Variables: $E = \{v\}$

9/28/04

Structure of a Variable

- Value (s)
- Time interval of validity (t)
- Context (c)
- Resulting Boolean predicate

 $c:v(s,t) \to \{T,F\}$

Sentences/Assertions:

 $c:v_1(s,t) \land c:v_2(s,t') \land ...$ $c_1: labor(``100\%'', t_1) \land c_1: prod_rate(``100\%'', t_1)$

Worlds

• Snapshot of the environment at a time point T $W(T) = E|_T$

W(T) =

{g:weather("sunny",t), $c_1: labor("100\%", t_1),$ $c_1:prod_rate("100\%", t_1),$ $c_2: labor("100\%", t_2),$ $c_2: prod_rate("100\%", t_2),$ $c_3: labor("100\%", t_3)$ $c_3: prod_rate("100\%", t_3)$ }

Sub-Worlds

• Set of variables which belong to a particular activity context $W'(c) = \{v_{c1}, v_{c2}, \dots v_{cm}\}$

W'(c) : Context Specific W(C) : Global

 $W'(c_1) = \{c_1: labor(``100\%'', t_1), \\ c_1: prod_rate(``100\%'', t_1)\}$ $W(\mathcal{O}) = \{g: weather(``sunny'', t)\}$

Actions and Events

Reasoning

Inference Rules

- Event Closure
 Event --> Action
- Attribute Closure
 Change in attribute
 --> Event

Context c'

 $v_l \in W'(c)$

 $Meets(t_1, t_2)$

9/28/04

9/28/04

Algorithm: Discussion

- Uses Horn Logic
 - No Disjunctions
 - No Negations
- Sound
 - Every event predicted is entailed by the KB
- Complete
 - If an event is entailed by the KB it will be detected

Conclusions

- Expressive semantics
 - Parallel/Overlapping Events
 - Precedence constraints
 - Resource constraints
- Good foundation for the development of interactive general purpose simulation environments
 - Construction Education
 - Test bed environments
 - Decision making tools

Questions ?

The Finite State Machine

- A Model of computation:
 Kripke Structure: *M* = <*S*,*I*,*R*,*L*>
- *S* : Finite set of states
- $\mathcal{I} \subseteq S$: Set of initial states
- *R* ⊆ *S* x *S* : Transition functions mapping current states to successive states
- £ : Language

Air Combat Domain: SOAR

- Pilot agents participating in battlefield simulations (Tambe et.al. 1995)
- Using ModSAF (Calder et.al. 1993)
- Use of DIS technology (Distributed Interactive Simulations)
- Built on SOAR: States represent situations

Distributed Interactive Simulation Environment Pilot **Pilot** Pilot User ModSAF ModSAF ModSAF User **Environment**

The SOAR Framework

The SOAR Framework

