Implementing a General **Purpose Framework Using** Multi-Agents for CM Education Amlan Mukherjee Eddy M. Rojas William D. Winn University of Washington

Overview

Motivation

– CM Education

- Why Situational Simulation?
- Why do we need a General Purpose Framework (GPF)?
- The Multi-Agent Framework
- Experiments and Results

CM Education

De-contextualized knowledge

Separate Courses

Results: Inability to apply "learning" to relevant situations.

Instead . . .

- Situated Contextualized Learning
 - Embedded in the environment
 - Physical Embodiment
- Adaptation
 - Student and environment:
 - coupled system
 - self-organizing
 - dynamically evolving

Simulations in Learning

- Explore "What-if" Scenarios
- Understand Inter-relationships
- Apprehend Feedback
- Take Risks

The Virtual Puget Sound

Challenge

Real Life Construction Management Scenarios

Artificial Environment •Interactive •Adaptive •Engaging •Situated

Challenge

• Extensible

- Variety of operations/ processes / scenarios
- Levels of granularity
- Re-usable
 - Reuse reasoning components
- Scalable (!)

Problem Classification in CM Domain

- Precedence Constraints

 Finish to start, start to start, start to finish

 Resource Constraints

 Requirement Availability
 Specification checks

 Events: Constraint Violations

 Rescheduling of activities
 - Reallocation of resources

Winter Simulation Conference

1/21/05

1/21/05

The Framework

- Environment defined as a set of variables
- Operation defined on Environment
 O(E)
- Agents implement Operations
 A.O(E)

- Database (DB)
 - As-Planned Schedule
 - As-Planned Resource Allocation
 - Unit Resource Costs
- Knowledge Base (KB)
 - Event definitions $\{Pre-Cond\} \Rightarrow \{Post-Cond\}$
 - Event frequency

- Three Agents and Operations

 LA: Create, Infer
 MA: Unite, Compute
 VA: Visualize

 Utilities

 Scheduling
 - Scheduling

1/21/05

Testing

- Tested with 19 Senior level CM students: Pre-test/ Post-test protocol
- Claim I: The environment is useful for training Construction Managers
- Claim II: Learning in the CM domain is based on an understanding of *Precedence and Resource Constraint Satisfaction*

Results

Temporal Constraint Satisfaction

Event Scheduling / Event Premonition

Discussion

- Learn interactively
- Understand constraints
- Apprehend problems
- Discover systemic relationships

Future Work

- Study the CM domain as a Human-Resource Coupled System
- Explore Mental Models of Experience
- Generate KB from Expert participation
- Develop an ontology for CM applications

Reinventing the Wheel?

- Not simulation of *The Operation* Instead simulate processes *As it Happens*
- Planning and context-sensitive reasoning environment
- Web-based implementation
- Not an "Either-Or"

Acknowledgements

- Human Interface Tech. Lab., UW
- Ted Herb, Principal, GLY Construction, Seattle

Questions ?