

Intentional Unusabilty: Supporting
deniability through unorthodox design

 Abstract

Social software is different from singe user software

because when we use it, we care about how our actions

affect others’ perception of us. The design features of

the software interact with this cognitive, social

reasoning process or “theory of mind” and affect user

behavior. However, this influence can sometimes be

counterintuitive to those versed in traditional

interaction design. One important set of social protocols

that we use in our everyday lives is plausible deniability

- white lies that allow us to hide the true motivations

for our actions. This paper shows how plausible

deniability can be achieved in social software by directly

violating established design guidelines and deliberate

usability degradation. Such “deliberate unusability” is a

common feature of social software constructed with the

theory of mind as a guiding principle and show the

need for a new set of design guidelines for social

software that take this cognitive modeling into account.

Keywords

Social software, plausible deniability, theory of mind,

social reasoning, social psychology, usability,

Copyright is held by the author/owner(s).

CHI 2007, April 28 – May 3, 2007, San Jose, USA

ACM 1-xxxxxxxxxxxxxxxxxx.

Xianhang Zhang

University of Washington

Seattle, WA 98115 USA

Xianhang@u.washington.edu

 2

ACM Classification Keywords

H1.2 User/Machine Systems --- Software psychology,

H5.3. Group and Organization Interfaces --- Theory and

models

Introduction

Traditional HCI and interaction design has focused

around usability. An application is usable if it is

efficient, effective, easy to use, fun or some other

metric pertaining to the subjective experience of the

user. One powerful tool in this approach, borrowed

from psychology, is the mental model. Mental models

are naïve, cognitive schemas about how objects work

and how one interacts with them, like “The progress

bar measures how much time is remaining”. These

mental models provide us with predictions and

expectations about the results of an interaction and

usability is enhanced if the user’s mental model is a

good fit with the actual behavior of the application.

This mental modeling approach is effective for single

user application interaction but needs to be augmented

in the case of social software because users not only

have a mental model of the application, they also

contain “social mental models” or “theories of mind” of

the people they are interacting with. We model other

people through these theories like “John thinks he’s

shy” or “Lisa likes John”. However, theories of mind

differ from the traditional mental models because

minds are also capable of possessing theories of mind.

This means such theories can be multilayered and

recursive like “John thinks I think he’s shy” or “Lisa

thinks that John doesn’t know that I’m aware that Lisa

likes John”.

We construct and use these theories of mind to guide

our social reasoning process and they form a crucial

part of how we decide how to act in social situations.

When we are interact via social software, the software

modulates the range of interactions that are possible.

The design of the software affect what theories of mind

are constructed and, as a result, what users will choose

to do. Thus, it becomes possible to use these theories

of mind to construct a model of user behavior and how

it will emerge through social software design as well as

how to influence and encourage certain group

behaviors through this design.

Plausible deniability

Judging motivations forms an important part of our

social reasoning process because motivations allow us

to predict how people will react in future scenarios.

Plausible deniability is the ability to hide the true

motivations of our actions by providing others with a

plausible, alternate hypothesis or “convenient fiction”

that can explain our behavior. Such motivation hiding

acts as an incredibly powerful social tool by allowing us

to mitigate potentially socially awkward situations

(“Sorry I didn’t answer your call, my cell phone was on

vibrate ”) or giving us an advantage in social

negotiations (playing hard to get in a relationship).

In order to support such plausible deniability in cell

phone example, the social situation has to be set up so:

 I know “my cell phone is on vibrate” is a

convenient fiction for me not answering.

 I know I've told you that my cell phone was on

vibrate.

 3

 I know that you can’t know for sure that my

cell phone wasn't on vibrate.

 Therefore, you are forced to accept my

convenient fiction.

It is this need to support convenient fictions that often

is at odds with conventional HCI. Oftentimes, effective

plausible deniability involves deliberately making

software harder to use to enhance the ambiguity

present in plausible deniability. This paper details

several design mechanisms for supporting plausible

deniability by deliberate usability degradation.

Omitting information:

Omitting information is the most direct approach to

supporting plausible deniability by directly hiding the

information necessary to determine motivation. For

example, most email systems don’t tell you when an

email you send has been read by the recipient.

Although this information might be useful to the

sender, it would also prevent the recipient from

plausibly claiming “it must have got caught in the spam

filter” when they would rather not have to bother

replying to an email.

Error prone UIs:

Making user interfaces deliberately more error prone

can allow users to plausibly claim they made an error

when they actually did something intentionally. This

can allow users to avoid appearing to be rude when

attempting socially awkward tasks. For example, if a

group event planning tool had a highly sophisticated,

foolproof invitation system; it would be hard to

plausibly claim that you accidentally forgot to invite

somebody. Subtle UI tweaks that introduce room for

error into the system would support such plausible

deniability and allow users to “forget” to invite certain

people to an event.

Default settings:

Default settings allow us to be ambiguous about

whether we agree with the defaults of the system or

whether we simply don’t bother to change them. For

example, if the default action on accepting a friend

request on a social networking site is that they can only

see a limited part of your profile, then you could alter

the default for most of your normal friends so that they

can see all of your profile but keep it at the default for

certain friends. Those friends who can only view the

limited profile would not be able to tell if that was a

deliberate decision or carelessness on your part. But

such ambiguity can only be achieved if the default

setting is plausibly difficult to use. Thus, plausibility can

be enhanced by deliberately making the setting more

unusable by making it harder to understand or placing

it in a more obscure location so that users can plausibly

claim “Oh, I can’t be bothered changing that”.

The nature of a default setting also changes the

meaning of what changes in the default represent. Any

change from the default indicates that not only do you

not prefer the default; you dislike it to such an extent

that you are willing to expend the effort to change that

setting. If the default setting when adding friends was

that they could see your full profile, then by setting

someone as limited, you’re sending the message to

them that “you’re so awkward/creepy/unpleasant that I

was uncomfortable with you seeing all of my profile”.

Instead, if the setting was limited by default, then the

social message you are sending by setting someone as

full is “you’re so cool and interesting and close to me

 4

that I made a special effort to give you more access to

my profile”.

Perceived vs actual usability:

Plausible deniability doesn’t have to involve actual

usability degradation. What is important is that you

believe other people think it is difficult for you to use.

This means that it could be possible to take advantage

of perceptual biases to introduce perceived unusability

without significantly degrading actual usability.

The effect of unusability

Social expression

Supporting plausible deniability also tends to make

rude actions even ruder. Because a plausible, polite

alternative is present, that I chose not to use it sends

the message that I want you to know that my

motivations are indeed rude. This is not necessarily a

bad thing in social software as it allows users to

express a larger gamut of social messages.

Plausibly denying plausible deniability

Designing for plausible deniability is only effective if

users are unaware that this was your intention. Once

users become aware of this, then such actions become

much less credible. Thus, designers themselves need a

plausible reason for their design decisions to make their

software less usable.

If the initial design of the software is usable, then it is

very hard to justify design decisions making it less

usable. However, if is hard to use to begin with, then

designers can simply claim that improving that

particular aspect of usability is not a priority. Designers

can also claim their design decisions were motivated by

other concerns, a concern for privacy or technical

limitations for example which can also limit usability.

Finally, if all else fails, then it’s always possible to

pretend to be bad designers who are ignorant of the

design flaws and who studiously avoid investigating

them.

Conclusions:

Building social software is very different from building

conventional software and a new set of design

principles and paradigms are needed for effective social

software applications. Rather than focusing on usability,

the most important aspects of social software is the

facilitating of desirable group behaviors.

In this paper, we present a cognitive model called

“theory of mind” that allows designers to predict user

behavior based on a set of cognitive reasoning

principles. We focus on the particular design problem of

supporting plausible deniability in social software and

shown how software sometimes needs to be in direct

violation of traditional notions of usability to effectively

support such behavior. Supporting plausible deniability

often involves deliberately making the system less

transparent and more ambiguous through intentionally

poor usability but such design changes allowed a wider

range of social expression to be performed.

In the future, gathering empirical data on how theories

of mind interact with software design and how users

perceive others through the lens of social software

behaviors would allow more accurate and powerful

prediction models to be built and a better

understanding of the design challenges uniquely facing

social software.

