

The Use of Dense Stereo Range Data in Augmented Reality

Gaile Gordon†, Mark Billinghurst††, Melanie Bell†††, John Woodfill†, Bill Kowalik†††, Alex Erendi†††,

Janet Tilander†††

Tyzx, Inc.† Human Interface Technology Laboratory †† ChevronTexaco†††
301 Bryant Street University of Washington, Box 352-142 PO Box 6046
Palo Alto, CA 94301 Seattle, WA 98195 USA San Ramon, CA 94583
gaile@tyzx.com grof@hitl.washingon.edu mecb@chevrontexaco.com

Abstract
This paper describes an augmented reality system that

incorporates a real-time dense stereo vision system.
Analysis of range and intensity data is used to perform two
functions: 1) 3D detection and tracking of the user’s
fingertip or a pen to provide natural 3D pointing gestures,
and 2) computation of the 3D position and orientation of
the user’s viewpoint without the need for fiducial marks
calibration procedures, or manual initialization. The
paper describes the stereo depth camera, the algorithms
developed for pointer tracking and camera pose tracking,
and demonstrates their use within an application in the
field of oil and gas exploration.

Keywords: vision-based tracking, natural interaction,
unprepared environments, depth sensing, stereo

1 Introduction

Low power, compact hardware support for fast dense

stereo depth computation enables new techniques for many
applications. In Augmented Reality (AR), fast depth
sensing can help in a number of areas including: more
natural methods for interaction via robust gesture analysis,
computing camera pose without requiring fiducial marks in
the scene, and rendering dynamic real world objects with
correct occlusion relationships with virtual objects. This
paper addresses the first two issues. New algorithms are
presented to perform 3D detection and tracking of the
user’s fingertip or a pen to provide natural 3D pointing
gestures, and to compute the 3D position and orientation of
the user’s viewpoint without the need for fiducial marks or
complex calibration procedures. These methods are
incorporated into an existing AR system [4] and
demonstrated within an application in the field of oil and
gas exploration.

Dense stereo depth has traditionally been too
computationally intensive to use in real-time systems
without one-of-a-kind specialized hardware [8] – producing
issues of cost, form factor, and power consumption.
Recently, a specialized ASIC [22, 19] has been developed
for real-time dense stereo processing, creating new

opportunities for low-power, real-time 3D systems. The
AR system presented here uses a Tyzx stereo vision system,
which is described in more detail in Section 3. The rest of
the paper describes the pointer tracking and pose tracking
algorithms, followed by a target application in the field of
oil and gas exploration. Finally we discuss directions for
future work and our conclusions.

2 Related Work

Automated 3D detection of the user’s fingertip or a held

pointer facilitates interaction with the virtual objects in an
AR application. Rendering of the detected pointer also
contributes to a shared understanding of the virtual space
during collaboration [3, 18]. Previous approaches to
pointer tracking have largely relied on instrumenting the
pointer, e.g. with a Polhemus tracker [18, 12] or haptic
device [20], which is undesirable from a usability
perspective. There has also been some work on 2D vision
based techniques [5] that has limited value because the
motion of the hand is only captured in two dimensions (e.g.
these methods require additional interface protocols - such
as a pause or independent hand gesture - to indicate a
“click” in a 3D mouse application). This work has also
assumed a fixed camera position. A few authors have
addressed 3D vision-based pointer tracking [15, 14] from a
fixed viewpoint, however these approaches have been
limited to tracking a hand, relying on skin color for
segmentation or a full kinematic model of the hand. In both
approaches the pointer features are extracted independently
in two views and combined to compute 3D position. No
previous vision-based method has addressed 3D tracking of
generalized pointers with a dynamic camera viewpoint
against complex backgrounds. The method presented here
addresses all these issues through the use of dense stereo
and intensity data.

Automated real-time computation of the viewer/camera
pose relative to the coordinate system of the virtual data is
crucial in AR systems in order to maintain the perception
that the virtual data is part of the real world. There are
many successful systems for vision based camera pose
tracking [11, 23], most of which are based on fiducial
markers introduced into the scene at known 3D positions.

These methods are not appropriate for operation in
unprepared (natural) environments. Some work has
focused on augmenting a limited set of fiducials with
natural features automatically detected in the image [7, 9].
Several authors have also addressed unprepared
environments by using general structure from motion
algorithms or modifications of these algorithms [17] to
compute relative inter-frame motion. These methods require
manual initialization to determine absolute camera pose and
cannot operate in real time without simplifying
assumptions. Little work has been done in real-time camera
pose in unprepared environments using depth sensors.
Using a depth sensor has the advantage of providing direct
measured 3D relationships between image points –
information which otherwise is provided by calibrated
fiducials or manual initialization. The use of feature based
(sparse) stereo to compute camera pose using natural
features has been investigated [9]. Our approach differs in
several important ways from this work: our system uses
dense rather than sparse stereo, it does not require
initialization with fiducial markers, does not integrate an
inertial tracker, and runs on a single PC (rather than SGI
Onyx2 IR with 16 CPU’s). The camera pose-tracking
algorithm presented does assume that the virtual data
coordinate system is defined relative to a plane in the scene
(table, floor, etc). This simplification is similar to that in
[17], and fits well with the paradigms of many AR systems.
It does not require any other prior knowledge about the
scene, and can operate with natural complex backgrounds.

3 Dense Real-time Stereo System

The AR system developed is related to a previous

handheld opera-glass display used in the MagicBook
system [4]. A binocular display (800x600 pixel Inviso
eShades) is coupled to a Tyzx stereo camera head (Figure
1) for image capture. The stereo camera head is a
lightweight (6 ounces) pre-calibrated unit with a baseline of
1.5 inches. The left and right images are sent to a PCI board

that hosts the Tyzx DeepSea ASIC. The DeepSea card is
low power and contains the complete stereo computation
engine, leaving the PC's processor essentially unburdened
and available for other tasks.

The DeepSea ASIC is capable of processing 512x480
images at rates of 132 frames per second (fps) with a high
depth resolution of 52 disparities. The imagers used in this
application provide imagery at 30 fps. Depth resolution in
the near field (about 30 cm from the camera) is better than
1 mm based on 3 bits subpixel match accuracy. At about
60 cm (maximum reach of the user) the depth resolution is
just under 3 mm.

Unlike feature based stereo systems, which compute
sparse depth measures based on correspondence of high
level features detected independently in each image, this
stereo system computes depth on a pixel by pixel basis.
This approach requires no a priori or application dependent
knowledge about the scene. The underlying stereo matching
algorithm used is the Census correlation [24], which is
based on comparisons of relative intensity patterns. The
DeepSea ASIC uses a parallel, pipelined architecture first
demonstrated in an FPGA implementation [22]. The
system outputs 16 bit depth images as well as synchronized
and rectified left and right images. Rectification aligns the
images’ epipolar geometry and eliminates image distortion;
the left image is registered to the depth image. This
imagery is ideal for use by binocular displays, and would
not be available from any other type of depth sensor (laser
scanner, time of flight).

4 Natural Pointer Detection and Tracking

The 3D position of a pointer controlled by the user is a

valuable input for interaction design. If a viewer would like

Depth Image

Camera
Pose

Select range
in volume of

interest

Left intensity Image

Transform
to camera

view Background
model

Image
difference

Find pointer tip (x,y)

Construct
foreground mask

mask

Update
background

model

Find pointer tip z

Transform to Virtual Coord.s

Kalman
Filter

Figure 2: Pointer detection and tacking algorithm

 Figure 1: The handheld display

to discuss a location in the virtual dataset, it is very natural
to simply point at this location as they view the data. We
introduce a method of computing the 3D location of a
viewer’s fingertip or held pointer, such as a pen, in the
coordinate system of the virtual data. A virtual pointer can
be rendered into the scene at this location or into different
views of the virtual data to aid in collaboration.

Our pointer detection and tracking algorithm uses both
range and intensity data. A Kalman filter is used to increase
stability. The algorithm is summarized in Figure 2 and can
be broken down into the following steps, which we describe
in more detail below.

1. Threshold range data beyond the reference plane
2. Compute the intensity difference between the

background model and the current frame
3. Evaluate range support within the difference mask

to reduce the effect of shadows and noise
4. Locate the (x,y) tip of the pointer using a priori

location estimate from the Kalman filter
5. Use depth data to determine z coordinate of the

pointer tip
6. Update the Kalman filter with the detected

location
7. Use the difference mask to update the background

model

4.1 Selecting 3D region of interest
The first three steps in the pointer tracking algorithm

focus on segmenting the image data to identify in which
pixels the hand or pointer appears. We first segment the
range data, then the intensity data, then combine these
results to produce a foreground mask used in the remaining
stages of the algorithm.

In the paradigm of the earlier MagicBook system [4], the
virtual data coordinate system is positioned with respect to
one or more square targets on a planar surface (Figure 3).
The planar surface provides an intuitive reference on which
a virtual object rests. Following this approach, the pointer
detection search is limited to the space between the
reference plane and the viewer.

The transform between the virtual data coordinate
system and the camera view coordinate system is often
referred to as the model view matrix, M, or the camera

pose. The virtual data coordinate system is defined as
shown in Figure 3. In the camera coordinate system, the x/y
plane is parallel to the imager, and the z axis points
perpendicular to the imager, out into the scene. M is
computed either from the target image (based on known
metric relationships between points on the target), or using
the 3D data on the planar surface as described in Section 5.
This transform defines the position of the reference plane
(x/y plane in the model coordinate system) in the camera
view. We use the z coordinate of the reference plane in
camera view to threshold the depth data at every pixel -
such that we consider only data closer to the viewer than the
reference plane.

4.2 Computing the foreground mask
We use intensity data to improve reliability of the

pointer detection when range can not be measured at all
points on the hand/pointer and to improve the segmentation
of the pointer boundary. Background subtraction is a
classic method of image segmentation in which the typical
appearance at each pixel is used to model the background.
Any pixel that isn’t modeled well by the background
statistics is then taken to be part of the foreground. This
has been used very successfully in fixed camera views with
both depth and intensity image statistics [6]. However, the
viewpoint with the handheld display is constantly varying.
Therefore, we model the background in the more stable
coordinate system of the virtual world. We define the
background model to be the intensity pattern on the
reference plane, as seen from the positive z-axis in the
virtual model coordinate system (see Figure 4D). The
background model is initialized (using M-1 and taking the
depth at each pixel to be the depth of the plane) based on
the view when there is no object detected in the scene (or at

Figure 3: Virtual model coordinate system. Origin is
center of target. Target plane is X/Y plane. Z axis is
perpendicular to the target.

Y

X

Z

Reference plane

Square
fiducial target
of known size

 A B

C D

Figure 4: A) left image, B) difference mask,
showing range support in white, C) geodesic
distance from the border, light colors are
further, minimal path shown in red, and D)
background model.

the time the pointer mode is turned on). The background
model is updated at each frame, using the foreground mask
to insure we do not corrupt the model with foreground data.

To perform the background subtraction we use M to
transform the background model into the current camera
view, and then take the absolute value of the difference
between the transformed model and the current left image at
every pixel where data is defined for both views.

The raw difference image has several undesirable
properties that we must address. First, small errors in the
estimation of the camera pose will cause slight
misalignments in view. These misalignments can cause high
difference values that do not correspond to foreground
pixels. The difference mask is filtered with a
morphological opening to eliminate up to approximately
one pixel misalignment effects. A larger morphological
closing is also used to fill holes in the mask caused when
there are similar intensity values in background and
foreground. Second, shadows will be represented in the
difference mask but are not part of the pointer itself. The
depth values on the shadows would be at the depth of the
plane (or undefined if there is no texture), so we eliminate
components of the difference mask that have no depth
support. Although we eliminate these points from the mask
used for further pointer tip analysis, we do not update the
background at the detected shadow points. Figure 4 shows
some intermediate steps of the pointer processing. The
image in Figure 4A is the left intensity image, showing a
hand reaching into the scene holding a pen. The foreground
mask computed is shown in Figure 4B, with the range
support shown in white.

4.3 Locating the pointer tip
The pointer tip detection is done in the camera view

space. The location algorithm is based on the simple
observation that if the viewer is reaching into the scene
their hand or arm will always intersect the border of the
image. The location of the tip of the pointer in the 2D
foreground mask will therefore be the point farthest from
the image border, where distance is measured only within
the shape of the foreground mask. More specifically, the tip
will be the maximum geodesic distance from the border
(Figure 4C). The z value at the tip is computed from the
depth image. The 3D orientation of the pointer is also
computed by considering the minimal path away from the
tip location towards the border (shown in red in Figure 4C).
The 3D points along the first 2 cm of this path are fit to a
line that provides the orientation vector of the pointer. A
Kalman filter with a constant velocity motion model is used
to stabilize the tip location and provide an estimate of the
tip location for the subsequent frame. M-1 is used to
transform the position of the pointer into the virtual model
space where it can be used to interact with the virtual
content.

5 Camera Pose Tracking

Camera pose tracking is a critical part of any AR system.

The task is to determine the six degree of freedom
transform between the virtual data coordinate system and
the camera coordinate system, M, which is often referred to
as the model view matrix because it maps the model into
the current view. M is determined by three rotation angles,
α, β, γ, and a 3D translation, Tx, Ty, Tz. The pose tracking
algorithm we have developed, summarized in Figure 5,
makes use of the dense range data to determine the equation
of the reference plane in each frame. Fitting the depth data
from a large number of pixels to a plane reduces instability
due to measurement error. The orientation of the reference
coordinate system on the plane (γ), and the location of the
origin of the reference coordinate system on the plane are
determined based on the relative locations of intensity data
features on the surface of the plane. The three degrees of
freedom that are determined directly from the depth data at
each frame will not be subject to drift. This provides an
advantage over structure from motion algorithms that
determine all six degrees of freedom relative to the previous
frame, and hence are subject to drift in all six parameters.
We also provide an explicit drift correction step based on a
map of “global” intensity features. The algorithm can be
broken down into the following steps:

1. Detect planes in depth image: set α, β, Tx, Ty, Tz

Detect
planes

Depth image

Track Plane Plane i-1

Left
intensity
image

Map intensity
to normalized

view, Ni
(M′)−1(α, β, 0, Tx, Ty, Tz)

Align Ni to Ni-1 Ni-1

update

Align Ng to global
feature map

to correct for drift

M

Global feature map

update

Figure 5: Camera pose tracking algorithm

Map intensity to
adjusted

normalized view, Ng
M−1(α, β, γ, Tx, Ty, Tz)

2. Map intensity on candidate plane to the model
coordinate system creating the normalized view, Ni

3. Find 2D transform matching Ni to Ni-1: set γ, and
update Tx, Ty, Tz

4. Match adjusted Ni to global view: refine γ, Tx, Ty,

Tz to correct for drift
5. Update global view with newly visible features

5.1 Detecting the Reference Plane
At each frame the incoming depth image is first

processed to find candidate reference planes. A least
squares plane fit is performed in each 25x25 window of the
data. The regions are iteratively merged, beginning with the
best fit plane, with other similar planes detected. The final
set of planes is compared with the tracked plane from the
previous frame to determine correspondence.
Correspondence is based on a comparison of plane
orientation and distance from the viewer. If no planes were
previously tracked, a track is initialized based on the
detected plane that includes the most data points. The
orientation and distance of the plane provides 3 degrees of
freedom of the pose. The 2D position of the origin of the
model coordinate system on the plane and the rotation of
the coordinate system about its z axis (γ) cannot be
determined from the range data itself in our application (in
which the view often contains only the reference plane).
The origin is set arbitrarily (to the projection of the image
center on the plane) at this point and corrected in the
following steps based on the intensity data and the pose in
previous frames. Similarly, γ is initially set to zero. We
refer to the model view transform in this partially
determined state as, M′.

5.2 Normalized View

The intensity data in the left image that is part of the
detected plane is mapped to the model view using
(M′)−1. This transform will place the image data on the x/y
plane of the model coordinate system. The image will look
as if we are seeing the scene from a constant distance
directly above the plane. We refer to this as a normalized
view because we have factored out the effect of plane
orientation and viewing distance. Computing the
normalized view in each frame reduces the pose tracking
problem to a search for a 2D rigid transform: a single angle
of rotation and a 2D translation, aligning Ni to Ni-1, the
previous frame’s normalized view.

5.3 Determining On-Plane Rotation and
Translation

There have been many solutions presented to find the
best 2D transform aligning two images. For efficiency, we
use a feature based method. The feature selection and
tracking method presented in [16] is used to identify local
intensity regions that are considered optimal for tracking
(regions that have strong edges in multiple directions). The

feature locations identified in the first image are
independently tracked into the second image, based on a
Newton-Raphson method minimizing the difference
between two image windows. Since a rigid transform
should preserve distances, we use this principle to remove
features that have been tracked poorly before computing the
transform.

 More specifically, we construct an F x F matrix, D,
where F is the number of features tracked between images.

D(i,j) = | ||fi –fj || - ||fi
′ –fj

′ || |,
where fi is the detected location of feature i and fi

′ is the
tracked location. Based on the observation that a badly
tracked feature would have higher relative distance to most
correctly tracked features, we begin with the feature that has
the highest row (or column) sum, and remove features until
the maximum entry of any row is below a threshold.

The optimal 2D transform that maps the features onto
their tracked locations is computed using a singular value
decomposition as presented in [2]. The resulting 2D
rotation angle is added to the previous frame’s solution for
γ, the rotation angle about the model z axis. The 2D
translation is used to modify the previous frame’s estimate
of the origin of the model coordinate system.

5.4 Compensating for Drift
Pose parameters that are computed relative to the

previous frame’s solution will typically exhibit drift over
time as error accumulates. We introduce a global feature
map in order to reduce the effect of drift. The global feature
map is a 2D map indicating the location of intensity
features (and the intensity pattern around the points) on the
reference plane that have been identified as good areas for
tracking. It is maintained in the normalized view,
representing the x/y plane of the model coordinate system.
At the time the reference plane is initially detected, the first
set of intensity features is added to the map. In each
subsequent frame, new features are added that do not
overlap those already on the map.

A new normalized view, Ng, based on the inverse of the
current full pose estimate, M, is created and compared to
the global feature map. The alignment error between these
two views will be due to error in the pose computation
process, and should be very small – indeed, it is typically
less than a pixel. We find the best 2D transform aligning Ng

to the global map using the same method discussed above.
The resulting rotation and translation are used to refine the
pose parameters.

The 3D rotation and translation transforms based on the
estimated α, β, γ, Tx, Ty, Tz, are composed to form the final
camera pose estimate, M. By anchoring the results to the
global features at each frame, the camera pose remains
stable over many frames.

6 A Prototype Application

The techniques we have described remove the need for
fiducial based AR tracking and allow users to interact with
virtual content using their free hands or natural objects. As
such dense stereo methods can be used in a wide range of
possible application areas. The application area we have
initially selected is scientific visualization in the petroleum
industry. The dense stereo tracking and interaction
techniques have been implemented in a prototype AR
visualization system being developed at ChevronTexaco. In
this section we first describe the motivation for this system,
then the implementation and user experience.

6.1 Motivation
The oil and gas exploration and production (E&P)

industry has been using visualization techniques for a
number of years. Immersive projection environments are
becoming common. These are used to create, understand
and refine large and complex models of the earth’s
subsurface for the purposes of finding oil and gas bearing
reservoirs. One of the greatest recognized values of the
immersive projection environments is the collaboration they
provide to cross-functional teams of earth scientists and
engineers working on a field. However, collaboration in a
stereo projection environment has several drawbacks.
Currently, only one or two distinct user perspectives can be
supported and all other views have some distortion. A high
level of expertise is needed to drive the application in the
environment, which causes some participants to be unable
to participate in determining the view of the model. Costs
limit the number of immersive projective environments,
allowing only a few teams to work at a time and the
technology is not available at all office or work locations.

Due to the high cost of drilling wells (up to $35 million
USD) and the high risk of failure (1 in 10 exploration wells
result in an economic reservoir), most E&P companies do
not explore and produce fields alone but partner with other
E&P companies. Partner meetings are frequent, with the
involved companies coming together to agree on the earth
model, the risks involved in drilling, well path direction and
final well location. These meetings, unfortunately, do not
always take place where an immersive projection
environment is available.

The goal of our AR application research is to provide a
method of viewing the data at partner meetings. The
application must be portable, secure, and intuitive. Data
models are always changing, as more information about the
subsurface becomes available. To incorporate these
changes, the data models must be easily updated. The
current method of viewing the data is to show 2D paper
maps that display the earth model at various depths or fixed
views from a 3D modeling application. (Figure 6)

Using AR technology we can provide a portable
visualization system that gives some of the capability of
immersive projection displays at considerably less cost. In
addition, if each user has their own handheld display they
can get independent views into a dataset and collaboratively

discuss the same model. In working toward this vision we
have developed several prototype interfaces that we
describe in the next section.

6.2 Implementation
In the first version of this interface, the ARToolKit

tracking library [1] was used to superimpose virtual models
on a set of fiducial markers. When users look through the
handheld display at a sheet of paper with squares printed on
it, they see 3D virtual seismic and oilfield information
overlaid on the paper (Figure 7). On this terrain model,
virtual cubes represent the location of wells in an oil field.
Some of the wells in the field produce oil while others
inject steam into the reservoir. (The steam loosens the oil,
allowing it to flow.) Users can interact with the model using
a handheld paddle (Figure 8). They are able to touch
individual oil wells in the model to see information about
the capacity and flow rate of that well. Users have the
option to show all wells, production wells or steaming
wells.

Figure 6: Fixed view plot of 3D earth model

Figure 7: AR View of the Oilfield Wells

 The paddle can also be used to manipulate the entire
model. In the viewpoint move mode the motions of the
paddle are mapped onto model rotation and zooming. As
the user moves the paddle left and right the entire model
rotates about its vertical z axis, while up and down motion
rotates the model about the horizontal x axis, and moving
closer and further to the user’s view (along the z axis)
zooms the model in and out. In this way the user can see the
model from any viewpoint, or zoom in to get a close view
of the wells (Figure 9). Users can toggle between
pointer/selection mode and the viewpoint move mode either
through keyboard commands or voice commands (using
Microsoft Speech SDK 5.1).

The current prototype builds on this earlier work by
replacing the fiducial tracking with dense stereo interaction.
Three dimensional pointer detection and tracking capability
was added to the system to provide a natural alternative to
the paddle interface. Figure 10 shows the AR view of a
subsurface view of a virtual earth model. This model
displays two surfaces and five faults to represent the
reservoir location. Red lines and yellow derricks represent
the well locations in the reservoir. The users can use either
their finger (Figure 10a) or a pen (Figure 10b) as a pointing
device. This allows them to show interesting parts of the
model to others involved in the discussion. They can

physically move around the model or move the pattern
sheet around to show the different orientations of the
model.

The camera pose that is required in the pointer tracking
can be computed via the traditional ARToolKit target-based
method, or via the depth based camera pose method of the
previous section. With the natural pointer detection method
described in section 4, users can interact with virtual
models with the same functionality as provided by the
fiducial paddle. However, there is no need to use a specially
marked object; users can select and rotate the model with
their hand or an ordinary pen.

 Natural plane camera pose tracking is included as an
alternative for the target-based method. Figure 11A shows
the instantiation of the earth model into an AR scene using
the camera pose solution of the new natural plane method.
Figure 11B shows the same model based on the camera
pose computed with the target method after fiducial patterns
are introduced to the scene. The position of the camera is
the same in both views. The orientation of the model is
aligned with the table in both cases and the model is shown
at the same scale. The primary difference between the two

Figure 10: AR view of earth model and the
finger or pen used as 3D pointer.

A

B

Figure 9: Virtual Terrain Model

Figure 8: Paddle Interaction with Well Models

methods is in how the initial position of the virtual data on
the reference plane is established. With the ARToolKit-
based system, the user indicates the initial position and
orientation of the virtual model by selecting the position
and orientation of the physical target. In the case of the
non-target mode, the origin on the plane and the rotation
about the model’s z axis cannot be detected directly from
the input data. The model is instantiated at the orientation
of the reference plane, but with a zero degree rotation about
its z axis, and at the projection of the center of the image on
the plane. As the viewpoint changes, the model maintains
this position. The user can move the origin of the model by
pointing at a new location with their finger, and can rotate
the model about its z-axis with pointer gestures in
viewpoint move mode as described above. It would also be
straightforward to use a target to provide the initial position
of the model, while using the 3D image data to track this
position and orientation. This would be useful for
interacting with large datasets, for which the target may pan
out of view or be blocked by other gestures.

With the inViso eShades used in the handheld display,
the virtual models can be showed in stereo. The binocular
display receives frame sequential stereo images. The
ocular separation can also be adjusted for each user to
enhance the viewed image. Users can toggle between stereo
and monocular views.

The pointer detection and tracking mode runs
concurrently with the target based camera pose tracking at
10 fps on an HP PC workstation with dual 1.7GHz Xeon
CPU’s. The implementation has not been multithreaded to
take explicit advantage of the second processor; the same
code running on a single processor 1.7GHz P4 runs at 9fps.
Additional performance tuning is necessary to improve the
interaction speed – at this update rate moderate velocity
motions are tracked successfully, but tracking can be lost
during higher velocity motions. The depth based pose
tracking algorithm runs at 6 fps in its current (unoptimized)
implementation. As with the pointer algorithm, the slow
frame rate limits the velocity of the camera motion that can
be continuously tracked. The user also sees more jitter in
the model position using the non-target camera pose
solution. We are currently working to improve stability by
incorporating a Kalman filter.

The models used in this interface were VRML 97 files
generated from GIS datasets. The well locations were
measured from maps of the oilfields and inserted onto the
terrain. The libVRML library was used to perform the
VRML rendering [13].

6.3 User Experience
User response to viewing earth models in our system has

been very positive. The initial rollout of the application
included a demonstration to 37 users. Most liked the
intuitive and collaborative aspects of the application.
Carrying a laptop with the model on disk and a paper target
of meaningless symbols is a more secure way to protect

company information than carrying a stack of paper maps.
As the users became accustomed to gathering around the
display and discussing possibilities, the top priority for
improvement was to add pointer capability to the
application.

The small group of test users thought that the addition of
the natural hand pointer furthered the understanding of the
data and created possibilities beyond the basic 3D pointer.
The initial system used the natural finger only as a pointer
and selector device. After the first user tests, the zoom and
rotation functions were added to the application. Further
work will include the use of the finger to select portions of
the virtual model or to do more complicated grouping of the
data in the model. In this way users will be able to operate
an AR interface with natural finger pointing to duplicate
what is traditionally done on a desktop screen with a mouse.

The current prototype was shown to a large, diverse
group of potential users at a demonstration held in a hotel
ballroom. Due to the surrounding noise levels, voice control
was not used. No special lighting was used nor were any
adjustments made to the system to handle conditions
different from our lab environment. A sheet of markers was

Figure 11: Camera pose tracking based on a
3D table surface (A) and with ARToolkit
fiducials introduced into the scene (B) for the
same camera position.

A

B

placed on the table and the wall. Each user had a few
minutes to interact with the systems. Most were able to
work the pointer tracking in the model with minimal
instruction. Users had better success with the smaller
virtual model since the model did not occlude their hand.
The visual feedback showing the location of the hand or
pen was important since the pointer will dip underneath the
model at times. Users gave the feedback that using the
pointer as a selection and interaction tool was valuable.

7 Conclusions

Approaches for interaction with AR content is an active

area of research. In the past researchers have explored a
variety of technologies including wired magnetic tracking
and vision-based fiducial markers. In this work we
introduce the idea of using dense stereo technology to
provide camera pose information and free-hand interaction.
Interfaces that use dense stereo are possible because of the
recent development of real time stereo vision systems, such
as Tyzx’s DeepSea hardware.

In this paper we have described algorithms for pointer
tracking and camera pose determination from a reference
plane. We have demonstrated both of these algorithms in a
visualization interface for the petroleum industry. Although
the current performance is slower than desired, users have
reported that they find it natural to use their hand to interact
with the virtual dataset and can see the potential for the
technology.

However there are some limitations with the current
system. The fact that the image of hand or pointer did not
occlude the model in the display was disorienting to the
viewer even when a virtual pointer was displayed. Future
work will include use of depth information to provide the
proper occlusion relationships between real and virtual
objects. This has been addressed by [23] in a feature based
stereo system, but this approach was limited to skin colored
objects, required simple (non-skin colored) backgrounds,
and produced only a single depth measurement for the
entire hand. Extension to this work [10] removed the focus
on skin color by using edge based stereo in the portion of
the image occupied by virtual objects. This work achieved
10fps for small virtual objects running on a 16 CPU SGI
Onyx2 IR. Wloka used real-time stereo depth to provide
occlusion information [21], however his system produced
low quality real-time data, creating aesthetically
unsatisfactory results. The combination of intensity and
higher quality real-time range data as presented in this
paper could provide a useful solution to this common issue
in AR which would run on a PC.

Unlike previous real-time stereo hardware, which was
not designed for mass production or embedded
applications, the DeepSea ASIC has the potential to be very
inexpensive when manufactured at moderate volumes. Its
small form factor will allow future versions of the hardware

to incorporate the computation engine and the imagers in a
single self-contained unit.

8 Acknowledgements
This project is supported by the ChevronTexaco

Corporation Strategic Research program in Visualization.
We would like to thank Gary Docktor, Ryan Saiki, William
Melendez and Paul Weston of ChevronTexaco for their
continued support of the computer systems. The Terrain
model was the work of James Waldrop. Thanks also to
Hirokazu Kato for helping in the development of the AR
Toolkit. Tyzx would like to thank Dave Jurasek for his
work on the design and support of the stereo camera head
and handheld display. Thanks also to Ron Buck for his
continued enthusiasm and support of the project.

References

1. ARToolKit site: http://www.hitl.washington.edu/artoolkit
2. Arun, Huang, Blostein, “Least-Squares Fitting of Two 3-D

Point Sets,” IEEE Transactions on Pattern Analysis and
Machine Intelilgence (PAMI), Vol 9, No 5 Sept, 1987.

3. Azuma, et al, “Recent Advances in Augmented Reality. IEEE
Computer Graphics and Applications, 2001. Vol. 21, No. 6,
pages 34-47.

4. Billinghurst, Kato, Poupyrev, “The MagicBook: A
Transitional AR Interface”. Computers and Graphics,
November 2001, pp. 745-753.

5. Hardenberg, Berard, “Bare-Handed Human-Computer
Interaction,” Proceedings of the ACM Workshop on
Perceptive User Interfaces, Orlando, Florida, Nov 2001.

6. Harville, Gordon, Woodfill, "Foreground Segmentation
Using Adaptive Mixture Models in Color and Depth",
Proceedings of the IEEE Workshop on Detection and
Recognition of Events in Video, (Vancouver, Canada), July
2001.

7. Jiang, You, Neumann, “Camera Tracking for Augmented
Reality Media,” Proceedings of IEEE International
Conference on Multimedia and Expo, July 2000, NY.

8. Kanade, Yoshida, Oda, Tanaka, “Stereo machine for video-
rate dense depth mapping and its new applications”. In Proc.
of IEEE Computer Society Conf. on Computer Vision and
Pattern Recognition (CVPR’96), pp. 109-202, 1996.

9. Kanbara, Fujii, Takemura, Yokoya, “A Stereo Vision-based
Mixed reality System with Natural Feature Point Tracking”,
Proceedings of International Symposium on Mixed Reality
(ISMR2001), Yokohama, Japan, March, 2001

10. Kanbara, Okuma, Takemura, Yokoya, “A Stereoscopic
Video See-through Augmented Reality System Based on
Real-time Vision–based Registration,” Proceedings of IEEE
Virtual Reality 2000, pp 255-262, March 2000.

11. Kato, Billinghurst, “Marker Tracking and HMD Calibration
for a video-based Augmented Reality Conferencing System.”
In Proceedings of the 2nd International Workshop on
Augmented Reality (IWAR 99). October, 1999, San
Francisco.

12. Kiyokawa, Takemura, Yokoya, “A Collaboration Supporting
Technique by Integrating a Shared Virtual Reality and a
Shared Augmented Reality”, Proceedings of the IEEE

International Conference on Systems, Man and Cybernetics
(SMC '99), Vol.VI, pp.48-53, Tokyo, 1999.

13. LibVRML library: http://www.openvrml.org
14. O’Hagan, Zelinsky, Rougeaux, “Visual Gesture Interfaces to

Virtual Environments,” Proceedings of 1st Australasian User
Interface Conference (AUIC2000). Canberra, Australia,
January 2000.

15. Rehg, Kanade, “DigitEyes: Vision-Based Hand Tracking for
Human-Computer Interaction,” Proceedings of the IEEE
Workshop on Motion of Non-Rigid and Articulated Objects,
Austin, Texas, November 1994.

16. Shi, Tomasi, “Good features to track,” In Proc. IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR94),
Seattle, June 1994.

17. Simon, Fizgibbon, Zisserman, “Markerless Tracking Using
Planar Structures in the Scene,” Proceedings of International
Symposium on Augmented Reality 2000 (ISAR 00), Oct
2000, Munich.

18. Szalavari, Schmalstieg, Furhmann, Gervautz. “Studierstube -
An Environment for Collaboration in Augmented Reality”.
Virtual Reality: Research, Development & Applications,
1998.

19. Tyzx DeepSea Development System, www.tyzx.com, 2002.
20. Walairacht, S., Yamada, K., Hasegawa, S., Koike, Y., Sato,

M. “4+4 Fingers Manipulating Virtual Objects in Mixed
Reality Environment”. In Proceedings of ISMR 2001, March
14-15, Yokohama, Japan, pp. 27-34.

21. Wloka, Anderson, “Resolving Occlusion in Augmented
Reality,” In Symposium on Interactive 3D Graphics, ACM
SIGGRAPH, 1995.

22. Woodfill, Von Herzen, "Real-Time Stereo Vision on the
PARTS Reconfigurable Computer," Proceedings of IEEE
Symposium on Field-Programmable Custom Computing
Machines, Napa, pp. 242-250, April 1997.

23. Yokoya, Takemura, Okuma, Kanbara, “Stereo Vision Based
Video See-through Mixed Reality”. In Mixed Reality –
Merging Real and Virtual Worlds, Springer-Verlag, pp. 131-
145, 1999.

24. Zabih, Woodfill, "Non-parametric Local Transforms for
Computing Visual Correspondence", Third European
Conference on Computer Vision, (Stockholm, Sweden) May
1994.

