
MagicMouse: an Inexpensive 6-Degree-of-Freedom Mouse
Eric Woods
HIT Lab NZ

eric.woods@hitlabnz.org

Paul Mason
Lincoln University, New Zealand

masonp3@lincoln.ac.nz

Mark Billinghurst
HIT Lab NZ

mark.billinghurst@hitlabnz.org

Abstract
An inexpensive computer input device was developed that allows
the user to operate within both 2D and 3D environments by
simply moving and rotating their fist. Position and rotation
around the X, Y and Z-axes are supported, allowing full six
degree of freedom input. This is achieved by having the user
wear a glove, to which is attached a square marker. Translation
and rotation of the hand is tracked by a camera attached to the
computer, using the ARToolKit software library. Extraction,
calibration, normalisation and mapping of the data converts hand
motion into meaningful operations within 2D and 3D
environments. Four input scenarios are described, showing that
the mapping of the position and rotation data to 2D or 3D
operations depends heavily on the desired task.

Keywords: Input Device, six degrees of freedom, camera, 2D, 3D

1 Introduction
With the constant increase in availability and performance of 3D
graphics cards, there comes a parallel need to be able to
intuitively perform operations in 3D environments such as
navigation, and control. These operations benefit from the ability
to translate along and rotate about the X, Y and Z axes, defined
here as Xpos, Ypos and Zpos, and Xrot, Yrot and Zrot
respectively. Previous research has shown that manipulation
operations are most effective with the ability to operate in six
degrees of freedom (DOF) simultaneously (WARE 1990).

Three-dimensional input devices are available in many forms,
but generally they are either limited or very expensive, or both.
The keyboard can be used to navigate in three dimensions, but it
is not designed for this, so it lacks both intuitive and analogue
control. Joysticks are the cheapest dedicated tools available, and
can be analogue; however, they only offer more than 3 DOF by
adding "hat" buttons (mini joysticks) and sliders, which are not
always very intuitive. A variety of ultrasound, magnetic,

mechanical and radio frequency devices can be attached to a hand
to track it, but most only determine position, require the user to be
tethered to the machine and are expensive.

This paper offers a cheap, intuitive, 6 DOF alternative using a
black cardboard square, a standard USB video camera and some
computer vision software (ARTOOLKIT 2002).

2 The MagicMouse
The MagicMouse has two key software components: ARToolKit
which generates a transformation matrix representing the hand;
and functions that extract Xpos, Ypos, Zpos, Xrot, Yrot and Zrot
from the matrix, normalise them to range from –1 to 1 (using
calibration data) and map them to a variety of operations.

ARToolKit is a free, open-source C software library that uses
computer vision techniques to calculate camera pose (position and
orientation) relative to a black square marker. It is fast enough to
perform this calculation at 30 frames per second on a normal
desktop PC (800Mhz Pentium III). ARToolKit is typically used
for applications that augment video of the real world with
computer- generated objects (Figure 1a).

2.1 Extraction of Data from ARToolKit
The user wears a glove with a marker attached (Figure 1b). The
ARToolKit library analyses each video input frame and creates an
OpenGL transformation matrix that describes the position and
rotation of the marker relative to the camera. Code was written
that converts the transformation matrix into Xpos, Ypos, Zpos,
Xrot, Yrot and Zrot. Once these 6 values are normalised they are
very easily mapped to operations in 2D or 3D environments.

2.2 Calibration and Normalisation
The system requires calibration so that incoming data can be
normalised to a value ranging from –1 to 1 for each DOF.

The position values are determined by calculating the position
of the marker within the viewing volume (Figure 2). Objects
must be within this volume to be visible, so a calibration
procedure was created that determined the maximum and
minimum X and Y extents at which the marker could be seen.

Users can set the front and back Z-depth of the volume. To
ensure the extents of –1 and 1 could be reached under all

Figure 2: The viewpoint of the camera (the grey box), and the
viewing volume, normalised using calibration data.

Figure 1a: An ARToolKit “marker” and a 3D object placed on it.
Figure 1b: The MagicMouse glove, marker and webcam.

conditions, the measured maxima and minima were reduced by
10%. The resultant values were used to assemble linear equations
for the boundary planes as a function of the raw z-value. For a
given z-value the maximum and minimum x- and y-values, can be
calculated. Knowing these values correspond to 1.0 and –1.0, we
can then normalise the raw x- and y-values obtained from the
transformation matrix. The raw z-values are normalised using the
maximum and minimum values collected from the front and back.

The rotation values range from –1.0 to 1.0 about each axis
relative to the minimum and maximum defined extents. Hand
rotation is limited by the flexibility of the wrist, so the rotation
extents ranged from –70° to 70°, with 0 being the resting pose.

2.3 Mapping of Data to Operations
The normalised values of X, Y and Z position and rotation could
be mapped to operations in many different applications like robot
control and 2D and 3D navigation. The way the data is mapped to
operations is critical in ensuring an intuitive interface.

We tested simple 2D and 3D operations using both absolute
and relative input. Absolute navigation moves the “cursor” in
direct response to the position of the controller (in this case, the
marker). Relative navigation constantly moves the “cursor” in a
direction equivalent to the position of the marker relative to the
centre of the control space, and in a magnitude that is equivalent
to the distance from the marker to the centre of the control space.
A standard mouse is absolute, while a standard joystick is relative.

2D navigation was implemented as mouse motion and button
clicks, which were synthesised using the Windows API function
mouse_event. This provides control of any standard windows
application that responds to standard mouse events.

3D navigation was implemented as keyboard presses, which
were synthesised using the Windows API function
keybd_event. While using keyboard events limits the
response and real world integration of this device, it provides
sufficient functionality to trial the device in an application.

Where relative-mode movement was used, a threshold was
implemented around the resting pose so that minor movement
within the threshold would not make the cursor move.

There was also experimentation with having positive Zrot
mapped to a Left Mouse Click and negative Zrot mapped to a
Right Mouse Click. Zrot was given a rotational threshold: beyond
which it synthesised a “button down” event, and below which it
synthesised a “button up” event. This was not very practical, as
the X and Y positions often changed as the marker was rotated,
causing confusion (accidental drags etc). An alternative would be
to do such actions with the spare hand or a small wireless device.

2.4 Resultant Operations and their Usefulness
Four different scenarios were tested as described below:
2D Absolute-Mode Mouse
This uses Xpos and Ypos to synthesise standard mouse
movements and Xrot to synthesise the scroll button. It is
particularly good for painting programs where normal mouse
operation can be clumsy. If the camera resolution is low, the
cursor may have an error of up to 4 pixels. The ability to use Xrot
for scrolling in text documents was found to be very intuitive.
2D Relative-Mode Mouse (like a 2D Joystick)
Either Xpos and Ypos or Xrot and Yrot are used to “push” the
cursor across the screen, and Xrot is used to synthesise the scroll
button. This is very similar to the 2D Absolute-Mode Mouse;
however, the Relative-Mode offers finer control over the cursor.
Due to the incremental nature of this scenario, natural hand jitter
is minimised, producing surprisingly steady control. Use of the
mouse_event function makes analogue control possible. For
example, a large Xpos makes the cursor move rapidly right.

3D Absolute-Mode Mouse
Xpos, Ypos, Zpos, Xrot, Yrot and Zrot are mapped directly to the
respective properties of a 3D cursor in a fixed volume. This
scenario is best suited to fixed-volume operations, e.g. viewing a
3D object from any position or direction. It is not well suited to
navigation within an “infinite” volume like a flight simulator. It
also has restricted rotation if the Xrot, Yrot and Zrot values of –1
and 1 are mapped directly to -70° and 70°. This is easily
overcome if values of –1 and 1 are mapped to -180° and 180°.
3D Relative-Mode Mouse (like a 3D Joystick)
Similar to the 3D Absolute-Mode Mouse, except movements and
rotations “push” the 3D cursor in that direction or rotation. This
scenario is closest to conventional joysticks (which work in
Relative-Mode) except it has an amazing 6 DOF. This makes it
well suited to navigation within an “infinite” volume like a flight
simulator or a “run and shoot” game, where the 3D cursor
controls the position, rotation and subsequent point of view of the
aeroplane or person etc. It is completely intuitive and surprisingly
accurate as the incremental nature of the scenario smooths out
natural hand jitters. Complex navigation such as rotating to the
left while moving to the right is much easier than comparative
operations using mouse and keyboard combinations.

3 Conclusions and Future Work
This paper has demonstrated that for the cost of a USB camera it
is possible to create an intuitive, 6-degrees-of-freedom mouse.
Considerable effort was invested in calibrating and normalising
the values for Xpos, Ypos, Zpos, Xrot, Yrot and Zrot so that they
could be easily mapped to various operations. Use of four
mapping scenarios showed that the mapping of the position and
rotation data to 2D or 3D operations depends heavily on the task.

This initial version of the MagicMouse did not synthesize
Windows joystick input. Creating an implementation of this
device that acts as a true joystick driver would maximise the
potential of this device, making it both analogue and far easier to
integrate into third party applications.

Relative-mode thresholds were implemented as a square area
(+-20 units in the X and Y axis, making a 40x40 square). Circular
areas should be investigated in case they are more intuitive.

As the resolution of the camera is lower than that of the
computer display, undersampling can affect the accuracy of the
absolute-mode scenarios. Combined with natural hand instability,
jitter of a few pixels was commonplace. While this is of little
consequence for some applications, noise reduction algorithms
could be applied to this data to reduce jitter. As higher resolution
cameras become commonplace, higher frequency sampling should
also be possible, making the system more responsive.

The ARToolKit has the ability to associate different markers
with different actions. With a variety of scenarios possible, it
would be attractive if the user could simply switch between them
by simply switching markers, e.g. the user could pick up a marker
with the pattern of a musical note to play music.

A variety of other limitations have been recognised with the
current implementation. The necessity to keep a fist raised for
extended periods of time may cause fatigue; however, the current
dangers of repetitive micro movements may be combated by the
ability to transform the computer interface experience into a more
physical one. This may require alternatives to the desk mounted
screen and chair be investigated. The ability to click buttons with
the hand that is wearing the marker would be quite attractive.

References
WARE, C. 1990. Using Hand Position for Virtual Object

Placement. Visual Computer 6 (5): 245-253.
ARTOOLKIT 2002 HTTP://WWW.WASHINGTON.EDU/ARTOOLKIT/

