ARToolKit | Mailing List Archive |
![]() |
From: | Pedro Cervantes <pedrocp@u ......> | Received: | May 30, 2003 |
To | artoolkit@h .................. | ||
Subject: | Wrong video display ! | ||
This is a multi-part message in MIME format. --------------050208070109070600060709 Content-Type: Content-Transfer-Encoding: 8bit Hi, I'm trying to use a USB Logitech Quickcam Pro 4000 under Linux with modules pwc & pwcx. When I use "camstream" I get a 640x480 x15 fps video. But in ARToolKit I get a colored square over the video. The problem is at the rendering to the window stage because I can have 3D objects even when the patts are behind that square. I captured a frame from "simpleTest2" but the same happens on every ART application (see attached file). Any ideas on how to correct this? I'm using the Uwe Wössner's ARToolkit 2.61 modification on RedHat 9.0 Here's my vconf inside all my applications: *vconf = "-dev=/dev/video0 -channel=0 -debug -width=640 -height=480"; ... And here's the debug info: === debug info === vd.name = Logitech QuickCam Pro 4000 vd.type = 1 vd.channels = 1 vd.audios = 1 vd.maxwidth = 640 vd.maxheight = 480 vd.minwidth = 160 vd.minheight = 120 ==== capture device channel info === channel = 0 name = Webcam tuners = 0 flag = 0x00000000 vc[0].type = 0x00000002 CAMERA === debug info === vp.brightness= 32256 vp.hue = 65535 vp.colour = 32768 vp.contrast = 31744 vp.whiteness = 30720 vp.depth = 24 vp.palette = 15 error: RGB Palette not supported, trying YUV420P === debug info === vp.brightness= 32256 vp.hue = 65535 vp.colour = 32768 vp.contrast = 31744 vp.whiteness = 30720 vp.depth = 24 vp.palette = 15 ===== Image Buffer Info ===== size = 921600[bytes] frames = 2 Image size (x,y) = (640,480) Usually I would prefer to correct this myself but I have a really close deadline for an arts show. So any help would be apreciated. Thanks in advance Pedro Cervantes --------------050208070109070600060709 Content-Type: image/jpeg; name="captured.jpg" Content-Transfer-Encoding: base64 Content-Disposition: inline; filename="captured.jpg" /9j/4AAQSkZJRgABAQEASABIAAD//gAXQ3JlYXRlZCB3aXRoIFRoZSBHSU1Q/9sAQwAIBgYH BgUIBwcHCQkICgwUDQwLCwwZEhMPFB0aHx4dGhwcICQuJyAiLCMcHCg3KSwwMTQ0NB8nOT04 MjwuMzQy/9sAQwEJCQkMCwwYDQ0YMiEcITIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIy MjIyMjIyMjIyMjIyMjIyMjIyMjIy/8AAEQgB4AKAAwEiAAIRAQMRAf/EABwAAQABBQEBAAAA AAAAAAAAAAACAQMFBgcECP/EAEkQAAIBAgUCAwUEBgcFCAMBAAABAgMRBAUSITEGQRMiUQcy YXGBFCORoRUWQrHB0QhSVpXS4fAkM2JysiU1Q1NzgpKzF6LC8f/EABoBAQADAQEBAAAAAAAA AAAAAAABAgMEBQb/xAAqEQEBAAICAwACAQMDBQAAAAAAAQIRAyEEEjFBUSIFEzMjMnFhgaGx 4f/aAAwDAQACEQMRAD8A7+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1/wDU To/+ymR/3dR/wj9ROj/7KZH/AHdR/wAJsAA1/wDUTo/+ymR/3dR/wj9ROj/7KZH/AHdR/wAJ sAA1/wDUTo/+ymR/3dR/wj9ROj/7KZH/AHdR/wAJsAA1/wDUTo/+ymR/3dR/wj9ROj/7KZH/ AHdR/wAJsAA1/wDUTo/+ymR/3dR/wj9ROj/7KZH/AHdR/wAJsAA1/wDUTo/+ymR/3dR/wmYw OAweWYOng8BhKGEwtO+ijQpqnCN227RWyu239T0AAAAAAAAAAAAAAAAAAAAAAAAADRuoEpZ5 i732UHft7sTFyUpPbl7mQzWUq2bYlzd/vJRe3ZbL8keG7cmns7Wjbsl6nBld5VvPiE4ScduV yUV3GUpyu33sSaelb2uVmnJOUdlx8ivadrc3aTi+dJB3ilJ7rj5Fzid4O6XDItxqK699ytb+ I2LUoanCN7NuyKylao1bZeiLlmlu+CMt5t2+ZOjaCjGKi1JSvzZ3sRqvVKyTXzReUEoJxSX0 La5u92JRbdlpja7tzbgtJXV7dz0JbtuxafvNLj0J2It2kmvwINapOTlva3HBcte5HZWu+/oP ptYgpNvazI1G2lG+zLs52Udt9RbTtK7Wy7jWh2cAHe5wAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaDmElHM8Xq2++nb8We FyTqO1lty+T15ir5pinO6+/nb/5M80oRbsrX+Jw2d1tLaomtlvconZ8782Kxd7ycWmtt1yQl Ja9KW/r8CvxKkpKMNTe7dkNNlvGz55Lc03Ky81n33sTW272ky29iCamrrduQnCc3GK5bui4l ZfK9vqR80pbP3Pe+CI1BCTtK8na3OxBtJK7tdk21KTV/yLbjfRvZcjQlKWlJPlO1y0oqMm23 u72LsrPvfcgvNduyUdtx6h7z2tYs6fiy9fRaXZlrduy23JNLUWlUep+VK9ylKL1XW6RchHS1 JPh8EW9FOWy1Pv6EjsQAO1gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQM0t+lMQ3fatL97PLdRfr8SObV3DNcYuyrz/6m eJ156FK+z4OHL6229rldWuub7EbwjHVJWkYjM83wuT5e8TjMRClJt6Iykk5bX7s8VHO5Zn0v DN6alBVKqjFS2ulK3r/EjVNxsUHCGqU3vJ+WxVvUt+V+Rr2Y5hXp1sqUWl4tV6o7+np+BkZ1 6katSCezfL7E6qNvU7Tajyr3ZVy0vkx0a04TbcmrruyE8RJyak1xt6iYpZGVoxUnt6sg03WU uy4Z4ITq1asaSlu+NjXq3VFOp1XRyfCedKpat20r6rf6Mn1PZuTeuppS35Lcn4kUovbv8DHZ bGp+lcbPxNoS0RVu3+kZNJR8rVm/qPiN7Rabju+eF6Efdte6b4ZK3lsveT5KTW8b7pBZFx02 vvchPd9i7zF77W+v0LKd36W9SJCuxAA7mAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAON4//asT1NXzH7vBrFVqEVzvGbs/ Lvvbg8mT42WH6Qp4vM56VQbUHa+qHZeVbdi/1RqxWaYj9Iz8HLsJjatR7atdpSt7u6NExFTE +0TOHSpx8HIsNLTGN1LXbtfyyWxzWdrbVw9F+0DqWrVxCqrJ6Eb04eNeMnf0a22fovmbfmdG hgsho5fhYQpUFUjoiko8NdlsZLDYahgMJQwuHjopUoqMVdvbtyYzqOooPBUrK8pRmnb47lbd pW8xT+35BF2c/FlqXpsZbETUK9SWpKOqyb4uYzGR19RZLFPdym//ANWYrr/N50MfQy7AzVKr Rl4k23pU779nvz6CYpZTGZ1l+HbhOvFySbdpx2/M8eH6iwGJxGiDcptbLyvb154OfYmlUxeM 1KtVdSq94qTa35svTn8yWGjPC4ipgsvrRxGK8N66ylrjTTvdKS3TsaTGaV9q2fqrq+FJxweT 0o4mpZ+JLTrS+F4y/I9/SWRUcoyiniZxhPFzinVqQlJpPfez/kaZOhQo4dUMPGqq3M60ktbf /Mt7G3dCY6tiMPisvra52inCpVu7NX2uxo7bHkS11cdUlvLxf5mUqN3c5bW4+BjMgV4YyVua ruZJtzVuYszyna8+KpftPuyNm2vTdoubKFm9/kW2pOOzV1stuCuk7RSsry4LTg5Q0arN7pkp xk427dysFx6rYn4fXXwAdjEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHzFjcxxvtMzPE1pR8DLqblVUbqV23dR4jLh8/An hsDneApqhQh4dBPyq8JfLnc6DFwo4eGHpwsobcluo9SVzm9ltNJwVLPlnWEq1XahCp5/c80f 3o2bPtLzzL6dvLUUmvge3lJ23WxiM1jqz3BQtf7rV+aIvf1OlzEp0uqcl3Tsqn7n/MxXXmT1 MfSw+aYSMFi6bfiOaehx+Nlfj4mSrzliessvwsYNyowk7XXGn/Js13rDP3j8bHpvJ/EnUcvv atOq6bXdqzSvtfuJ18S1zC1K+bVv0fk9PTLTprYxwvofLUZRvZfM9tPpvMMu1xwcE56HrqtS 1Tb53S3RumT5Lgsgy6NHD006kt51HFam/mkj2042i22n3L+yvq5vS6fzitdVHpblu1rul+Bv eR4CGV4KMYxXi6VeTW7a+h7IwVnK1mSg0vNJpJbFLtOkun244GrJWcpyk2mZCnTjCD37u1/Q 8PTKTyeGpPVKUvM+Oe579rJb/Qpd7WkI+6lpv9SFR6YxhFee+7L0rRhDazvvf0IRhpk5SfN7 OxCVPLuuE1v8fQhGFo2XPLJK8nbvfkjUk4TtF/S3clLroAO1gAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADjKzKilZS/J/y I/pGlvd88bP+Rm/slFKKavvvzsU+y0ptLRZrh3f4HJ7L6YNY+js27P5P+RYjF5hn9LE0d6cK ehv43Xr8jYpYenZRcb2laxKlShRlOKVpSW3yHSdNZVWWX9VYuvUpvTUorQ1Jeji/XtJmMyXK 8Hk1avWoy1TrVXUbs1a/zbN4nRjOK1K9tkyCw9GnFXjf43ZO4aa/UxcXqb4fHwLUcS3fRCck v6sTZXhqcU/Lz2uR+zUtKTS8vZkbRWv+NVcdXgz0rnyO558ROrUwdSlGhUtUeltwd0mbT4VJ Rk9ENKV35Tz+EprVGnDQnf3R7J0s5Vh3g8tp0X6u1+T0Qulfb5Mu1FFNNXS+PCI1PLKzVvoV t3UxRxlOqtasvityNR+ZJO6uXJyvPU27/AstuMbu23f4hMUTak432ZbSbcYd+5NXbXq92Vaa krNcdxodbAB2sQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAc8lFQ8zd2USck5N3j2jYrKDUlN7tNIo14cvLvc4NtEXFWi27 Rvf5FKkL1IzS4Kp6pRtsne/w+JSN3Uu1yrfInYg1K1uHcpJuLs1wTcHdJbpPf4oqo65TcnaV 7snadLKe8pPYhKzkov6r19C7UUZSilsUleLjfZrsNCxUTmnFe9ay+HqRotxUqba0pJ3L1FPV OXdSKS86qSfMVwSlCreTjZ2hbe/8BLztylyFZwcXxb8CF22lfZ/ighVNXkmk32t2LUldOE2k r32LknpqQta1rP8AmW5xcqmz25IuyUlJRn5Wtl2Ld5tp7b/l8yena8VuvVCLTaa47iJdbAB2 sQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAc+nHyaHuncjOUVRT/abtb0Kxlu0ndL8iEY3k5p+Xs7cnFNtBaraJK0b3+pST tNSg94riwcm0k9t+ST2g7P3rCXabVpRh4STleepytbgjGdtM/VE7KT33f7iis09r2bTXoTP+ pISUZvU3Z/wKTm4uLiuVbkS06W0W6d9UvQjUQK0FL4u6+Ba1Nyd9i7J2d+bkG26ija0rXa9A bJc6UuNiyn949NtkXLOrNq9rcfMNfdamrW+tyYsg4qW7I2Stu+SUm1BtOxDXe2y3dtxoItxW 75YtGNlG2/Yg9XmTstMiqbcItLzb8rgaQ62ADsZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA580lJNJbstyi0oxS9S6kpN xV1vbctykqdR7Xs+b8nE0i3BXtfn1KtJakuZPT8icpeFJPlItwvepVi9ptX+ZAKkqCqR/rvk rKXktxbuIq732sQd46pRjtw9/wAyye1J+aF1yktxfXGaa8ytt8PUhK7qKovTgpUcnBNR377g u1HFOMV3vcbxaem7t6k3C0VctuppW0eXtuEbR7tt7lJzXheZ8SutiqleMru0uxTw5xvGb1Pl O1rBK3NSdHTJWle7XoUUfOt+HcuSc3Jv/wAyVk/gu5GpOMFqirt8kbNoSu5yb9blIuyY0ycm 2r+hWUXoblvKW7XxJiY60ADsYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0GVPaLXKe7LDvKa+B6b2hJc/Eg4q9rbnVzeB L3h04+Ly9f7nnlFug1e9yu2j1J1Kbc029ub24IpXT1L7trdnm58eeF1Y7cc8cpuISfkS9Bf/ AIeV6+ovN002tk7FJSU7K22nYz0vtVJWdt36Fpzaj8yrnaWq2y2t8fUhKT0Tvu2n+YmNTsnU 1pPhkJq7T9NyULRoxgnukE3bfh7CYzYaYzin6bkZS1Xa232+BXUvD032uW5Jt2TsibpGoba1 Nq7XcjUpuo3vaCfJJ2Sio+6iEko1Wu8NiJpO0lJONobpbJkNN6d/V/xJ38qfxIxi5X82zbdr BHTrAAOxmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAA0nrj2oZB0PSdKvU+25m7qOBw84ucXp1J1N/u4u8d2m/NdJ2dvnTrj2 oZ/1xVdKvU+xZYrqOBw85KElq1J1N/vJK0d2kvLdJXd+ji8bPk7+RFy06jjvaNlVLNMJlmVK OaYqtV01fCqKNOlC13LXZqTt2V+Hdp7PY8DmtHGQWiWisv2Jvd7dvVHB/Z1g/FzbE4txg40K SirrdSk9mvpGS+p0k9nUcd8fHWm+tptc9yEo66cUrxW+zXBreDz2vSnCOJfiUkmm0vP2tv34 fO+/PrsVGvTxCVSlUU4L+q/ruYZ8GOU1Yxsz41uSlTio6fJ63LTWzS9297nuvrUtrKR5ZUGo Xj2drLc8rn8K494Ovi8mXrJZ1abd7q3yJSjGCu3d2vYq4Rsm9mWqsXp8u/ocNln1172cuKfv S2a+BWs1qS4vt8iqehyafmaIao3i5Lh/gVT8VqtOKs72/eQldq3oicYrU0+ZK6KalFcbruNd ii2jeXK4RGOmLfq3dslbZzb93tYiuNKXLvcjf4Toe7b+Fi0lKm7RfzZOKs2797EXdcu/oEad ZAB2MwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAeDOM7yvp/L54/N8dQweGjda6sranZvTFcylZO0Vdu2yOF9ce3/EVarwXRsfBpK6 nj8RRTnJqWzpwd0otLmau9XEWrvXj4c+S/xiLdOwdVdddO9G4dzzjMIU67hqp4Wn561TaVrQ W6TcWtTtG+zaOAdce3DPOoarwuQzr5Nlyum6dRePW811JzSvDZLyxfeScpJ7cyxuOxmZYueL x+Kr4rE1La61eo5zlZJK8nu9kl9DznpcXiYYd3uqXLYAXsJhp4zGUMLTcVOtUjTi5cJt2V/x OtDqXRGD+ydM0JOM4zxE5VpKaty7K23Dik/qbGW6FCnhsPSoUY6aVKKhCN72SSSRcCAuUMRV w1RVKM3CXF16FsAs39bJgs+pVYxhiV4VS/vL3f8AIy8Nr2XxdzRD2YHM8RgnaL103s4Sey37 ehFxlc2fB+cW2zpqqlpst7lmcJxlGnBala7drljAZjSxlKNmo1Wlqp3vpfztuvj8uD3U5eW/ 5nHz+HhnFcObPj6ry1Z2qaUnZJJXIXV7Pg9Fah4kozg0pJ8Pg8k1KOtyvzb4Hkc3jZ8d7d3H zY5SKR2m99m9iUYOVRwav6orGK0qV1db2IOo021dSfc5m+1uUlWqw0PyJ7fMq42c48XZKEVD S7JLfsQ17/JtC2piKlpWlMJapWW+12/QpJWep+t1YNeFPVy3u0iB1oAHYyAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxHVPUGH6W6YzDO8 VHVTwlJzULteJNu0IXSdtUnFXtte72JktuoMnXr0cLh6uIxFWFGhSg51KlSSjGEUrttvZJLu cb609v2ByvEV8B0zhIZhiKU3CWMrP/Z7pr3FF3qL3le8VdJrUmcX6w6+z/rfF+LmuK04eOl0 8FQco0INJrUoNu8t5eZtve17WS1g9Li8KTvPtS5fplM+6hzbqfM5ZlnONni8U4KGuSUVGK4U YpJRXLskt23y2YsA7pJJqKgAJA2foXL/ALZ1DGvON6WFi6jvDVFy4ir9nvdf8prB032e4LwM kq4qVPTPEVXaV76oR2W3bfX/AKsBtwACAAAAAAi3GSlFtSTumuxmMFnk4KFLErVBbeIuV8/X t/mYcBXLCZTtumHr060ddKpGcdt0y44wmkpRVu5pmHxNbDT1UakoN8+j+a7mcwedQraYVkqU r7tvyv69imWEy+ubLiyw7xZCWGk/PTbst7fwPI5JfeTVtrKJkoS8rV9Pw4LcqVKpOCaW2+9r fU83n8GXdw+tuLybJJk8Tc5WTvHZ2+ZC2m6e7L9SM4uUpWaVrNFhq1ZWknFfW/zPLz4s8LrJ 24Z45zcqjbsrq6uE/Eu3ZWdkyWzvJPa5bs0tnw729Si+3WwAdTIAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADh/9IjqeNDLMv6YoVJqviZrF 4jTOUV4UbxhGStaSlK752dNbbpncD439p3UP6y+0LNsbCr4mGp1fs2Gca3iw8On5VKD40yac 7Lbzvnl9fh8ftybv4VyvTUAAeuoAAAAAB3HLsFDLstw2Dhpao01C8Y6dT7u3xd39TlfR+AeP 6lwqtLRQfjzcWlbTxz/xaV9TrwAABAAAAAAAAAAAPdg81r4VqMm6tK1tEnx8mZ3CY2hilqpy d1u4PlfQ1QRbjJNNpp3TXYWMs+KZNznaUYrs3Y8ckniZ07KOpXjZWXy+Zj8LnUnaOKV12nGN mvmv5Hsr1Y18DHE0JXldSi7NOz+HP0MOXjxyxvsxxmXHSa0xaVlZ7kN2k4vb4inepT1Nu+m7 v6laf+6u2ltw+UfO8uplZHp4XcdbABuqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAANc69z6XTHQucZvSlONejh3GhOEYycas2oQlaWzSlKLd 77J7Pg+Kz6A/pHZ9FYfJ+nacoOcpvHVouMtUUk4U7PizvVut35Vx3+fz1vCw9eP2/bPK9gAO xAAAAAA3/wBnGASp4zMZKLbaoQd3dWtKW3G94/g/rvhiumsFPL+ncDh6mrWqeuSlHS4uT1NN fC9voZUIAAAAAAAAAAAAAAAAD15frU56Xtb3X3PIZPLad6bbSVndPu/9WMfIy9eO0vfT3qDU XUd1q2UF2+hDTNrdxSfpz9SblLXu/e3ISqKNRQ/aR85ld2ujHqOugA3VAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANR9p3UP6tez3NsbCr4eJ qUvs2Gca3hT8Sp5VKD51RTc7LfyPjlWxxuWUxn5HzD7R+p49XddZlmlCpOWD1qjhdU5NeFBa U4ppOKk056bbOb73ZqgB72OMxkkZAALAAABkMkwX6RzvBYV0/EhUqx1x1WvBby3+SZjzdPZ1 goVcyxeMlpboU4winG9nJvdPttFr/wBwHRwAEAAAAAAAAAAAAAAAABl8MlDDqK1J2XPr3/eY qnHXUhG9tTSv6GaScqdoxtJP1OD+oZ649E+xVyd079iG/iKXM2SaUdnyRi9KfaS/eeHjt1Ox AA6WYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB wD+kdn0niMn6dpymoRg8dWi4x0ybbhTs+bq1W62XmXPbv58V9e59HqfrrOM3pShKhWxDjQnC MoqVKCUIStLdNxjFu/dvZcHZ4WHtye36VyvTXAAesoAAAAAB1rovAPA9NUHNSU8Q3Xkm0+bK NresVF/U5XhMNPGYyhhabip1qkacXLhNuyv+J3GhQp4bD0qFGOmlSioQje9kkkkBcAAQAAAA AAAAAAAAAAAAv4OGvEJXSsna6vuZWpVV0uGmY7BR03qtWs7J/wCvoZNqlHDxUXaz3532PG/q Ge8/X9L4TvakkoRm6nv82+Jahqb1Tj52rPclFOUdTXkcnZFbqNtzzm0dhAB0KAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA032pdTx6V6AzHFxq ThisTB4TCOnOUJKrNNKSkk7OMVKfb3bXTaPjo7Z/SK6h+055lnT9GrenhKTxNdQrXTqT2jGU FxKMY3Te9qvZPfiZ6/h8frx7/bPK9gAOtAAAAAA92UZlPKM1w+OhTjUdJvySdrppp79tmzq2 UdS5XnNoYavorv8A8Cr5Z9+Fw9lfZu3c42SpznSqRqU5yhOLUoyi7NNcNMDvIOZZP17jsHoo 5hH7XQVlr4qRWy54lsnzu2+ToOX5pgc1o+LgsTCtFe8ls49t091w+Qh7AAAAAAAAAAAAAAAA ZPAxj9ltL9p339f9WPS1KraKdle7LdGNqUI3tFPd25JLi/CvsfO+VnMua1tx/wC1cUox8kdr L8y1Tbc/vXf0+BTUlJOX4epVvW1UlZStZfFHPLI027GADoZgAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABpPtbzeeTezHOqtKGupiKSwivTlOKVVq Em3H3fK5WbstWlbtpO2GPtlMZ+R8s9YZ9Lqfq/Nc5lKbhisRKVLxIxjKNJeWnFqO11BRXfjl 8mEAPfkkmoyAASAAAAAAAABewuKr4LFU8Thqkqdam7xnHt/r0LIA33J/aD7lHNqPovtFJfJX lH8W2vojeqFejiaMa1CrCrSlxOnJST7co4Qe7LM2xuUYqNfB1pQd05Qbeidu0l35f47AdtBq OT9e4HGaKOYR+yVnZa+acnsueY7352SXJtwQAAAAAAAAFYRlKaUV5u1yhfwcNda/Cir3sU5M vXC0rIqN6e627BO1JJ88IpeSScna75CtUnqbtQivNLu32SfB81nlLltvjjqaUcZN2g1Z778F dvDXr3T7Ek1JpU2mlzct31ampJX533KdVfTs4AOlmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADmXVvsP6Y6i1V8uh+hMa7efC006MvdW9LZLZP 3XHeTbufPHVXQvUXRuIcM4y+dOg56aeKp+ejU3la01sm1FvS7Stu0j7ULdehRxWHq4fEUoVq FWDhUp1IqUZxas009mmux1cXl54dXuK3Hb4MB9L9b+wbKc3hUxnTDhlmYSmpOhOT+zTvJuWy TcHvtp8qUUtKvdfP/UHS2edLYtYXO8tr4OpL3HNJwqWSb0zV4ytqV7N2vZ7npcXPhyfL2rZp iAAbIAAAAAAAAAAAMzkvU2Y5LUgqVWVXCp+bDzd4tb3t/V5b2783MMAOuZP1dleb6KfifZ8T Ky8Gq7Xe20Xw93Zd36GfOCG0ZL1vmOX1IU8bOWLwt/Nr3qRW97S78978W2A6mDG5VnmXZzTU sHiIymleVKW048XuvqldXXxMkEAAAHtwMqcITlN79l8e38TxHtw8Fop6nG74Uu/y/E5vMymP FT8r6Um4p20Lf/8A0rUaVFx2jByuktil6qm04KNN7RUk9S+ZHS9SjJ3SffdfQ+e6rpnxOC0U 0092t0QVlLy9/Xgq3KMmttL7vlC6VJLZad79wl2kAHQzAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8+NwODzLCTwmPwtDFYapbXRr01OErN NXi9nuk/oegAcE6x/o9f73GdJYz1l+j8XL/mdqdT/wCMUp/FuZxPOMjzTp/MJ4DN8DXweJjf yVoW1JNrVF8SjdO0ldO2zPucxmfdO5T1PlkstznBQxeFc1PRJuLjJcOMk04vlXTWza4bO3i8 3LHrPuK3F8Ng7Z1b/R6zDB6sT0rjPt9Lb/ZMVKMKy91bT2hLfU99FkkvMzi9ehWwuIqYfEUp 0a9KbhUp1IuMoSTs00900+x6PHy4ck3jVLNLYANAAAAAAAAAAAEqc50qkalOcoTi1KMouzTX DTN2yXr+vCpToZtCNSm3Z4iCtKPO7ilZ9uLbLuzRwB3PB43C5hh418JXhWpP9qDvZ2Ts/R7r Z7noOGYPHYrL8Qq+Erzo1V+1B2urp2fqtls9jf8AJevqGKqU8PmdKOHqSdlWg/u+/N949lff 12QG6JXaSRk//LVlZfDgxmHnTq+HUhJTpySkpQd00+GmZGUrRk9tuLnnefdyYk+9pVqspe82 3faxRzUNm1f4kL3p3fOq5R2nbb6/67HjN5dpycmrOyaLcpSUNKjd2334ZKdpJuSuu6E61WcN KX3fCe3BOh20AG6oAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAABrnVXQvTvWWHcM4y+FSuoaaeKp+StT2la01u0nJvS7xvu0zYwTMrjd wfMPW/sLznp+FTHZFOecYFTS8CFNvE005O3lSamktN5Rs7tvSkmzkx97mo9W+zTpjrPVVzHA +FjXb/bcK1Trfs8uzU9oqPmTsr2sd3F5tnXIrcf0+Ngb91j7Iep+kfFxP2f9I5ZC8vteETlo itTvUh70LRjdveKulqZoJ6OOeOc3jVAAFgBVJvhCUXGOpqyK3LHH7RQHQukvZbV6m6Z/TVXN Vg4SquFKmsP4mtJ2bvqVt77WN1wfsq6YwjqeLSxONUrW8eu1ot6aNPPxvwTLv4yy5scenCDJ 4Hp3OczjSngsqxlalVlphVjRl4bd7e/ayV+W3ZH0LgensmyydCeCyrB0alFaYVo0Y60rW9+1 27d29zJXSvui8xY3yf1HDcF7KepMVTcqyweEkpW0V61216+RSVvrfY2bB+x7AU1U+3Zria97 aPApxpW9b31X7eh0y3rsUhulq2foRdRS82d6ajDpvK+nvCoZXCtFuC8Rzrylrdl5nG+m7tyk j3WhoWubc+bRd0TxE/Exbk9N/wB3wLEnGFRKK1L+s+TwfNz3yV3cEtw3SU3UkoRVvgXGvdUH pklZ7XI2k2t/L3+BGo1C2nzLu+LHDNt5E4z0OXhPTfa/P7yzaFnG1iSkrrUtmR0pyVP9m+r5 f6sWiXdQAbqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAABz3rf2QdO9XwqYihShleazmpPGYeldT8zctdNNKTep+baV7btKz6E C2GeWF3jTT4ezvJlk2f4/KvH8Z4TFVcP4unTr0Scb2u7XtflmPahF2slu+Vc2TrZS/X3qO/f M8T/APbIwD814uO8fibZcvLl+We1eYRsr2fHFy3iE5SjFXblwl+4upJRknuuzPf03l0876qy vLqau6lZJ/Jbvs+yHFh7Xuq26j6IyXBxyvobI8DocKkKWtxd73k7u6e/fg9Fmo/NHpzGUViJ U4e5SioQXyVjzJpSSb5juezwz1wkebld2ordJFJJN8lZPTa3dlNnJJ7X9DVA227bFVJa137I g73uuFySvCnh62Ilv4MJSXx2M+XrFfjn8mtV4VauKqpRVtXF12I1PHT3V1e1ro1KnjKmIxFf Et7yk0vgj1fbK1O0tV1biyPnPImWWdu3qcdkx7Z51WvLa0vQQnB3dRapdlxYwP6Qqpp9+3H8 i5TzKad5fg0jGSxf2jOwnBPUrK29mykqt4pvSn6xMOszVr6fy/zJrMIylC90v3jdTuPo0AG6 oAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAPjv2iYTEZf151BDEUtFV5hVq21J3hUk6kHt6xlF+vruaxtLVO1vLt8ze/bLZe 1XOpWTf3Gz/9CmaHNJS0xd0zeTplfpGTlRcrbxR0L2M5bDFdZvMZJqOEpN03bbW1a3HNrs57 U+7UoLtFbep172IYOdPLs0zKqpqivuqSa2lUa3fG9k13239To4MPrLlv8XR8U28RN3V77XLM veTXpwyUpXk5Wvd3dyDfmX/Lfc9aTUefapZNb7q/cPaLl37fMpblepVNNtN3XCZZJuk7Pk8W f1XR6VxcU96i0J+n+rHsiuzl+RhepL16VDDPeKld/HZnN5V1g14u8tNCw+W16eGprxbbJ+6v 5k6mFrQSepyb9ImelRlJ2cXzyRnRblvGzfF1sfN5Z3b05h019Rrxf+7b/wDayDr1Iys6U/pF mwSoK+0X82i3PD0+XFfgJlU+umFWIuleEo/NWJrER24MpLC05OP3cfwR555XSbUtCvzzx+Y9 p+U6fTQANkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAA+UPbKl/+V85Vm3LwP8A6KZocI2U1J7x7+h1n2v9JZtW66zLOMNQ eJw9bwrU6EJzqRtShHdJWW69eDk9WM6KqqvTqU6jdpQlG0o/NM6v7WUxlrD2lt0t1GrOepqd ttz6H6Cy2WSezjAQnFqpiajrzjNbxu9uy7WPnmlQeKxeGwlK7qVakYRTty2kj6mxNFYTA4LA qWpUKEE3a13Y7PHw3Yw57qaWFJ7p990E7STvZ32fqIptqS9LENOmcdLsvQ9FyKu9pKWyve/I 974WDk9Ub7t33KJJzun8bgSTvOPomYDM5KrmlbT2e5nE9Ck36tmAl58RVqN7uXPc83+oZXHH p1ePjurUrabWv8kRcE7KyduNi9oVyCVnJp8cHgbekteGrcL8C1KnF09UorT6nod7rttdlLLS ttl+RFpXl8JNK2yiNEF2PRGnePqS0px5+ZI7wADqUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonUL/wC28Wrv9nbt7qNK z7ojLM8p1F4WGwVWpF/fww6bvbnazvt6m69R/wDfuI2/q/8ASjFO9rdj6Hhm+LH/AIn/AKeT yZWcl1+3J+n+isfkntIyeONd6EJKvCr5fMld8KTfOx13ES8WtVnay1OxajdbNWCjtGK7F8eO Y3pXLkuX1KLWiS9Vt8GQtqvF9lYk3aSSaIJaFa+5dXpWM01x+IfqrccFIq0vhbgrsnfd78BM W61RU8HVkrOy59GYGl95CMuL3vfm5mcZL7lRitm7tdjEqOiLv7t9jxv6llN6d/i/Nqaed/xK WSXBVxcaerl8tFVH3v8AiV4njSO2LdtVnaztZojsmlHjuXF5U23x3KOCi+SdRKCva2y+ZSCv G3e97koxcU+/zEFZpEWRH/LuoAOtQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGl9TUY0861Ju9WnGTv2e8f4Iwl7Tt9DPd Wq+Z0t//AAV++RgGvdPoPG74sd/p5XN/kolaSSfz+BVy7fgw7Slte9uxS6el8W5sbs1FZOMr 3Tb/ACKe67OzZThJd/T0KyTjZPm5IPm6ts7MNNSu9t+CllJJLbe8viTbc+9muxXLaYxOeVXR wuqL25sbNS6Wo4jJ8HVVXRUqU4zktLfO/qad1LUU8PPR/wAKS+qOsU6caWBw8IK0YU4pL02P B87P25NPT8fHWDTcf01TwWElXr42nTpvyqVRaYuXZXv3MZ+hcTNKVGrQmuPLJv8Ager2zVau H9mterRq1Kc44ik04Saa83wOG4TqvPaNKMoZrjErbp157v8AE4PW1v1PrsjyTG2s6FWXyg3/ AAPLVwWMowU6tCcYLluDSX5GD6DxfVPVOTZji8Pi8XWr4asoaVinGKW9vel8+5s/2vq/C05e LkEqkE+JY+k9/nuVyxyiZr8Vjne+yuRt+09muF6l+fU+PU7V+mNco7T/ANvitL78LcrDqbLq lRQxGVeE7rXH7S24r4bK+25GrU/93bAAdTMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGm9WP8A7VpKz/3K/wCqRgotu6Zn uq/+96X/AKC/6pGBa8y3PoPF/wAOLy+b/JRO26RRJRVtrc39SV9kuGQ3UIq3zZuzJpXT7si9 rfMlsqbfL7FE7Pd78r4EzaFOIJx5fLKXSUpLayvcNpNLt8OSFd6MO7fiymeWsbtfCbrAZxGV XD7Jt64p2Xa6OrU80wNfC0JUsVRcZJNLWr/Vcr5M5o467JpNPm6LkZzppxjNx0q6sz5rny3y W16nF1i2L2j5RPqnomvluCrUlUdWNRynLZKO/ZM4BT6QzvDU4wr4LRzpfiwd/wAGdmo5tjoU 1GGIsl6xT/gX/wBY8yglad7v0jt+RnjYva0X2XdUVOhsDmeDx+Ec6eJrKpCfiJJNJpppJv8A hszd6HtJ6fq4+pialbwas6ShJ6akuHx7h6qPVGI8RKtScoX3s1t8eC1jcVkeaR0Y3D4mUdWu zhBrVbne/qxlqpxy1+Nvfg+osijmM4wxmGTqftxxEZJ9/X5nswtLpzEYqrWrU8mructUZSjT lJv4t97moz6e6VxEtVOpjcPKXGiVKCj+WxWXQuHr0ZTy/Ns1py0PQ/tEbKXZ2SV1uu5X11N7 Wlm/js4ANmYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAANN6tv8ApSk07WoL/qkYGXvbc+vobR1ik1gk+PP/APyaund/Nux7 3iXfDi83nn+pUoWk1K94p7kZe8rPh+hWS/Z7IoqlJXTmrx53R0bkZa2q1qTu+9yDi9N+6Hiq 3MbP1IurFp2fu8iZJ9RpWjZ7vd/A8+NlKNGK/rNt3PQ3FSSju2Yfq/GRy3KIV1/vJPS/h+TM ua7w0vhNVKn5loT35JOKuk3ZmqYbqOpGkpauI3tb/I9+H6gU9LqzvF9o2/yPA5OPeW3fhlNM vOc8MvtFNObi09CXJuWFwWTY/B06kJ0sLUe8oePdr8f5GhxzfCTtGTe3y/meiGZ4aKgqVWcX vqepLb8TK8dnxpMo3iHTeW1JaadfU+bRnF/wMXPC5NTx1fCy8aVbDpOpDyO1+LoxviYuMI1K OKrwuk01UadjE5pkmHzbFyzDGUXVxFlF1HUd3ZJK9n6Irqr43GfY2avl2USn5MXoj3i6Lf5p ItrLcpi044yz9fCnt+ZpNTpbL5JpUdMrf1pP+Ji8T0hSqy+6caaXdyaf53Jls+luH6/8/wDx 9NgA0UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAABqPXFaNF4BzdovxLv/4mqLGUrrVJRaV1vybN19XwtL9H08Unon4m6ttb T6/M0BqNShVnGeqMINxd7tM9Tx+S48UkY5cUyu6yVbMowpTere22/wDmXcroyx9WFPVHVV31 N9jVVOpicIk56Wu/J6sDmNXCKKnu6TXhz27fCxXPmuWX8k48M/DL4ytLC4udGotKg7N+jR5q uOlTg6kN4vv/AKR4M1z55hpdT373vbv+B5MNjl9ilHZRhU5uP7m5/GtJwT8xl6ebxlGD7/6+ Br3tCxcsRLLqK9yMVO/1f8i5WxEZtyjLnvfc8uPUMZQSxF52Voy5a+rMcuXKdWovDPw1qNS0 VFfiTp1pR2Upbej4I4+g8uhSrKadKbsru7R54VoJu/JluKXGx7liqseJv53L1HMKtKN/Ecm3 vd3t+JjYVI8cK+xVVI302u/W5MsQzf6drJK0t13sv5Hqw/UmIpVIWrpK++0b/mjWk4/Uo2lO /cnY32PVlGUPvFGUkrXsv5kaee0JXjFKb57N/vNFcmmrPZko1JeGpfkVvf0nT//Z --------------050208070109070600060709-- |
From: | Pedro Cervantes <pedrocp@u ......> | Received: | May 30, 2003 |
To | artoolkit@h .................. | ||
Subject: | Wrong video display ! | ||
This is a multi-part message in MIME format. --------------000004090104020803030004 Content-Type: Content-Transfer-Encoding: 8bit Hi, I'm trying to use a USB Logitech Quickcam Pro 4000 under Linux with modules pwc & pwcx. When I use "camstream" I get a 640x480 x15 fps video. But in ARToolKit I get a colored square over the video. The problem is at the rendering to the window stage because I can have 3D objects even when the patts are behind that square. I captured a frame from "simpleTest2" but the same happens on every ART application (see attached file). Any ideas on how to correct this? I'm using the Uwe Wössner's ARToolkit 2.61 modification on RedHat 9.0 Here's my vconf inside all my applications: *vconf = "-dev=/dev/video0 -channel=0 -debug -width=640 -height=480"; ... And here's the debug info: === debug info === vd.name = Logitech QuickCam Pro 4000 vd.type = 1 vd.channels = 1 vd.audios = 1 vd.maxwidth = 640 vd.maxheight = 480 vd.minwidth = 160 vd.minheight = 120 ==== capture device channel info === channel = 0 name = Webcam tuners = 0 flag = 0x00000000 vc[0].type = 0x00000002 CAMERA === debug info === vp.brightness= 32256 vp.hue = 65535 vp.colour = 32768 vp.contrast = 31744 vp.whiteness = 30720 vp.depth = 24 vp.palette = 15 error: RGB Palette not supported, trying YUV420P === debug info === vp.brightness= 32256 vp.hue = 65535 vp.colour = 32768 vp.contrast = 31744 vp.whiteness = 30720 vp.depth = 24 vp.palette = 15 ===== Image Buffer Info ===== size = 921600[bytes] frames = 2 Image size (x,y) = (640,480) Usually I would prefer to correct this myself but I have a really close deadline for an arts show. So any help would be apreciated. Thanks in advance Pedro Cervantes --------------000004090104020803030004 Content-Type: image/jpeg; name="captured.jpg" Content-Transfer-Encoding: base64 Content-Disposition: inline; filename="captured.jpg" /9j/4AAQSkZJRgABAQEASABIAAD//gAXQ3JlYXRlZCB3aXRoIFRoZSBHSU1Q/9sAQwAIBgYH BgUIBwcHCQkICgwUDQwLCwwZEhMPFB0aHx4dGhwcICQuJyAiLCMcHCg3KSwwMTQ0NB8nOT04 MjwuMzQy/9sAQwEJCQkMCwwYDQ0YMiEcITIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIy MjIyMjIyMjIyMjIyMjIyMjIyMjIy/8AAEQgB4AKAAwEiAAIRAQMRAf/EABwAAQABBQEBAAAA AAAAAAAAAAACAQMFBgcECP/EAEkQAAIBAgUCAwUEBgcFCAMBAAABAgMRBAUSITEGQRMiUQcy YXGBFCORoRUWQrHB0QhSVpXS4fAkM2JysiU1Q1NzgpKzF6LC8f/EABoBAQADAQEBAAAAAAAA AAAAAAABAgMEBQb/xAAqEQEBAAICAwACAQMDBQAAAAAAAQIRAyEEEjFBUSIFEzMjMnFhgaGx 4f/aAAwDAQACEQMRAD8A7+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1/wDU To/+ymR/3dR/wj9ROj/7KZH/AHdR/wAJsAA1/wDUTo/+ymR/3dR/wj9ROj/7KZH/AHdR/wAJ sAA1/wDUTo/+ymR/3dR/wj9ROj/7KZH/AHdR/wAJsAA1/wDUTo/+ymR/3dR/wj9ROj/7KZH/ AHdR/wAJsAA1/wDUTo/+ymR/3dR/wj9ROj/7KZH/AHdR/wAJsAA1/wDUTo/+ymR/3dR/wmYw OAweWYOng8BhKGEwtO+ijQpqnCN227RWyu239T0AAAAAAAAAAAAAAAAAAAAAAAAADRuoEpZ5 i732UHft7sTFyUpPbl7mQzWUq2bYlzd/vJRe3ZbL8keG7cmns7Wjbsl6nBld5VvPiE4ScduV yUV3GUpyu33sSaelb2uVmnJOUdlx8ivadrc3aTi+dJB3ilJ7rj5Fzid4O6XDItxqK699ytb+ I2LUoanCN7NuyKylao1bZeiLlmlu+CMt5t2+ZOjaCjGKi1JSvzZ3sRqvVKyTXzReUEoJxSX0 La5u92JRbdlpja7tzbgtJXV7dz0JbtuxafvNLj0J2It2kmvwINapOTlva3HBcte5HZWu+/oP ptYgpNvazI1G2lG+zLs52Udt9RbTtK7Wy7jWh2cAHe5wAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaDmElHM8Xq2++nb8We FyTqO1lty+T15ir5pinO6+/nb/5M80oRbsrX+Jw2d1tLaomtlvconZ8782Kxd7ycWmtt1yQl Ja9KW/r8CvxKkpKMNTe7dkNNlvGz55Lc03Ky81n33sTW272ky29iCamrrduQnCc3GK5bui4l ZfK9vqR80pbP3Pe+CI1BCTtK8na3OxBtJK7tdk21KTV/yLbjfRvZcjQlKWlJPlO1y0oqMm23 u72LsrPvfcgvNduyUdtx6h7z2tYs6fiy9fRaXZlrduy23JNLUWlUep+VK9ylKL1XW6RchHS1 JPh8EW9FOWy1Pv6EjsQAO1gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQM0t+lMQ3fatL97PLdRfr8SObV3DNcYuyrz/6m eJ156FK+z4OHL6229rldWuub7EbwjHVJWkYjM83wuT5e8TjMRClJt6Iykk5bX7s8VHO5Zn0v DN6alBVKqjFS2ulK3r/EjVNxsUHCGqU3vJ+WxVvUt+V+Rr2Y5hXp1sqUWl4tV6o7+np+BkZ1 6katSCezfL7E6qNvU7Tajyr3ZVy0vkx0a04TbcmrruyE8RJyak1xt6iYpZGVoxUnt6sg03WU uy4Z4ITq1asaSlu+NjXq3VFOp1XRyfCedKpat20r6rf6Mn1PZuTeuppS35Lcn4kUovbv8DHZ bGp+lcbPxNoS0RVu3+kZNJR8rVm/qPiN7Rabju+eF6Efdte6b4ZK3lsveT5KTW8b7pBZFx02 vvchPd9i7zF77W+v0LKd36W9SJCuxAA7mAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAON4//asT1NXzH7vBrFVqEVzvGbs/ Lvvbg8mT42WH6Qp4vM56VQbUHa+qHZeVbdi/1RqxWaYj9Iz8HLsJjatR7atdpSt7u6NExFTE +0TOHSpx8HIsNLTGN1LXbtfyyWxzWdrbVw9F+0DqWrVxCqrJ6Eb04eNeMnf0a22fovmbfmdG hgsho5fhYQpUFUjoiko8NdlsZLDYahgMJQwuHjopUoqMVdvbtyYzqOooPBUrK8pRmnb47lbd pW8xT+35BF2c/FlqXpsZbETUK9SWpKOqyb4uYzGR19RZLFPdym//ANWYrr/N50MfQy7AzVKr Rl4k23pU779nvz6CYpZTGZ1l+HbhOvFySbdpx2/M8eH6iwGJxGiDcptbLyvb154OfYmlUxeM 1KtVdSq94qTa35svTn8yWGjPC4ipgsvrRxGK8N66ylrjTTvdKS3TsaTGaV9q2fqrq+FJxweT 0o4mpZ+JLTrS+F4y/I9/SWRUcoyiniZxhPFzinVqQlJpPfez/kaZOhQo4dUMPGqq3M60ktbf /Mt7G3dCY6tiMPisvra52inCpVu7NX2uxo7bHkS11cdUlvLxf5mUqN3c5bW4+BjMgV4YyVua ruZJtzVuYszyna8+KpftPuyNm2vTdoubKFm9/kW2pOOzV1stuCuk7RSsry4LTg5Q0arN7pkp xk427dysFx6rYn4fXXwAdjEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHzFjcxxvtMzPE1pR8DLqblVUbqV23dR4jLh8/An hsDneApqhQh4dBPyq8JfLnc6DFwo4eGHpwsobcluo9SVzm9ltNJwVLPlnWEq1XahCp5/c80f 3o2bPtLzzL6dvLUUmvge3lJ23WxiM1jqz3BQtf7rV+aIvf1OlzEp0uqcl3Tsqn7n/MxXXmT1 MfSw+aYSMFi6bfiOaehx+Nlfj4mSrzliessvwsYNyowk7XXGn/Js13rDP3j8bHpvJ/EnUcvv atOq6bXdqzSvtfuJ18S1zC1K+bVv0fk9PTLTprYxwvofLUZRvZfM9tPpvMMu1xwcE56HrqtS 1Tb53S3RumT5Lgsgy6NHD006kt51HFam/mkj2042i22n3L+yvq5vS6fzitdVHpblu1rul+Bv eR4CGV4KMYxXi6VeTW7a+h7IwVnK1mSg0vNJpJbFLtOkun244GrJWcpyk2mZCnTjCD37u1/Q 8PTKTyeGpPVKUvM+Oe579rJb/Qpd7WkI+6lpv9SFR6YxhFee+7L0rRhDazvvf0IRhpk5SfN7 OxCVPLuuE1v8fQhGFo2XPLJK8nbvfkjUk4TtF/S3clLroAO1gAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADjKzKilZS/J/y I/pGlvd88bP+Rm/slFKKavvvzsU+y0ptLRZrh3f4HJ7L6YNY+js27P5P+RYjF5hn9LE0d6cK ehv43Xr8jYpYenZRcb2laxKlShRlOKVpSW3yHSdNZVWWX9VYuvUpvTUorQ1Jeji/XtJmMyXK 8Hk1avWoy1TrVXUbs1a/zbN4nRjOK1K9tkyCw9GnFXjf43ZO4aa/UxcXqb4fHwLUcS3fRCck v6sTZXhqcU/Lz2uR+zUtKTS8vZkbRWv+NVcdXgz0rnyO558ROrUwdSlGhUtUeltwd0mbT4VJ Rk9ENKV35Tz+EprVGnDQnf3R7J0s5Vh3g8tp0X6u1+T0Qulfb5Mu1FFNNXS+PCI1PLKzVvoV t3UxRxlOqtasvityNR+ZJO6uXJyvPU27/AstuMbu23f4hMUTak432ZbSbcYd+5NXbXq92Vaa krNcdxodbAB2sQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAc8lFQ8zd2USck5N3j2jYrKDUlN7tNIo14cvLvc4NtEXFWi27 Rvf5FKkL1IzS4Kp6pRtsne/w+JSN3Uu1yrfInYg1K1uHcpJuLs1wTcHdJbpPf4oqo65TcnaV 7snadLKe8pPYhKzkov6r19C7UUZSilsUleLjfZrsNCxUTmnFe9ay+HqRotxUqba0pJ3L1FPV OXdSKS86qSfMVwSlCreTjZ2hbe/8BLztylyFZwcXxb8CF22lfZ/ighVNXkmk32t2LUldOE2k r32LknpqQta1rP8AmW5xcqmz25IuyUlJRn5Wtl2Ld5tp7b/l8yena8VuvVCLTaa47iJdbAB2 sQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAc+nHyaHuncjOUVRT/abtb0Kxlu0ndL8iEY3k5p+Xs7cnFNtBaraJK0b3+pST tNSg94riwcm0k9t+ST2g7P3rCXabVpRh4STleepytbgjGdtM/VE7KT33f7iis09r2bTXoTP+ pISUZvU3Z/wKTm4uLiuVbkS06W0W6d9UvQjUQK0FL4u6+Ba1Nyd9i7J2d+bkG26ija0rXa9A bJc6UuNiyn949NtkXLOrNq9rcfMNfdamrW+tyYsg4qW7I2Stu+SUm1BtOxDXe2y3dtxoItxW 75YtGNlG2/Yg9XmTstMiqbcItLzb8rgaQ62ADsZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA580lJNJbstyi0oxS9S6kpN xV1vbctykqdR7Xs+b8nE0i3BXtfn1KtJakuZPT8icpeFJPlItwvepVi9ptX+ZAKkqCqR/rvk rKXktxbuIq732sQd46pRjtw9/wAyye1J+aF1yktxfXGaa8ytt8PUhK7qKovTgpUcnBNR377g u1HFOMV3vcbxaem7t6k3C0VctuppW0eXtuEbR7tt7lJzXheZ8SutiqleMru0uxTw5xvGb1Pl O1rBK3NSdHTJWle7XoUUfOt+HcuSc3Jv/wAyVk/gu5GpOMFqirt8kbNoSu5yb9blIuyY0ycm 2r+hWUXoblvKW7XxJiY60ADsYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0GVPaLXKe7LDvKa+B6b2hJc/Eg4q9rbnVzeB L3h04+Ly9f7nnlFug1e9yu2j1J1Kbc029ub24IpXT1L7trdnm58eeF1Y7cc8cpuISfkS9Bf/ AIeV6+ovN002tk7FJSU7K22nYz0vtVJWdt36Fpzaj8yrnaWq2y2t8fUhKT0Tvu2n+YmNTsnU 1pPhkJq7T9NyULRoxgnukE3bfh7CYzYaYzin6bkZS1Xa232+BXUvD032uW5Jt2TsibpGoba1 Nq7XcjUpuo3vaCfJJ2Sio+6iEko1Wu8NiJpO0lJONobpbJkNN6d/V/xJ38qfxIxi5X82zbdr BHTrAAOxmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAA0nrj2oZB0PSdKvU+25m7qOBw84ucXp1J1N/u4u8d2m/NdJ2dvnTrj2 oZ/1xVdKvU+xZYrqOBw85KElq1J1N/vJK0d2kvLdJXd+ji8bPk7+RFy06jjvaNlVLNMJlmVK OaYqtV01fCqKNOlC13LXZqTt2V+Hdp7PY8DmtHGQWiWisv2Jvd7dvVHB/Z1g/FzbE4txg40K SirrdSk9mvpGS+p0k9nUcd8fHWm+tptc9yEo66cUrxW+zXBreDz2vSnCOJfiUkmm0vP2tv34 fO+/PrsVGvTxCVSlUU4L+q/ruYZ8GOU1Yxsz41uSlTio6fJ63LTWzS9297nuvrUtrKR5ZUGo Xj2drLc8rn8K494Ovi8mXrJZ1abd7q3yJSjGCu3d2vYq4Rsm9mWqsXp8u/ocNln1172cuKfv S2a+BWs1qS4vt8iqehyafmaIao3i5Lh/gVT8VqtOKs72/eQldq3oicYrU0+ZK6KalFcbruNd ii2jeXK4RGOmLfq3dslbZzb93tYiuNKXLvcjf4Toe7b+Fi0lKm7RfzZOKs2797EXdcu/oEad ZAB2MwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAeDOM7yvp/L54/N8dQweGjda6sranZvTFcylZO0Vdu2yOF9ce3/EVarwXRsfBpK6 nj8RRTnJqWzpwd0otLmau9XEWrvXj4c+S/xiLdOwdVdddO9G4dzzjMIU67hqp4Wn561TaVrQ W6TcWtTtG+zaOAdce3DPOoarwuQzr5Nlyum6dRePW811JzSvDZLyxfeScpJ7cyxuOxmZYueL x+Kr4rE1La61eo5zlZJK8nu9kl9DznpcXiYYd3uqXLYAXsJhp4zGUMLTcVOtUjTi5cJt2V/x OtDqXRGD+ydM0JOM4zxE5VpKaty7K23Dik/qbGW6FCnhsPSoUY6aVKKhCN72SSSRcCAuUMRV w1RVKM3CXF16FsAs39bJgs+pVYxhiV4VS/vL3f8AIy8Nr2XxdzRD2YHM8RgnaL103s4Sey37 ehFxlc2fB+cW2zpqqlpst7lmcJxlGnBala7drljAZjSxlKNmo1Wlqp3vpfztuvj8uD3U5eW/ 5nHz+HhnFcObPj6ry1Z2qaUnZJJXIXV7Pg9Fah4kozg0pJ8Pg8k1KOtyvzb4Hkc3jZ8d7d3H zY5SKR2m99m9iUYOVRwav6orGK0qV1db2IOo021dSfc5m+1uUlWqw0PyJ7fMq42c48XZKEVD S7JLfsQ17/JtC2piKlpWlMJapWW+12/QpJWep+t1YNeFPVy3u0iB1oAHYyAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxHVPUGH6W6YzDO8 VHVTwlJzULteJNu0IXSdtUnFXtte72JktuoMnXr0cLh6uIxFWFGhSg51KlSSjGEUrttvZJLu cb609v2ByvEV8B0zhIZhiKU3CWMrP/Z7pr3FF3qL3le8VdJrUmcX6w6+z/rfF+LmuK04eOl0 8FQco0INJrUoNu8t5eZtve17WS1g9Li8KTvPtS5fplM+6hzbqfM5ZlnONni8U4KGuSUVGK4U YpJRXLskt23y2YsA7pJJqKgAJA2foXL/ALZ1DGvON6WFi6jvDVFy4ir9nvdf8prB032e4LwM kq4qVPTPEVXaV76oR2W3bfX/AKsBtwACAAAAAAi3GSlFtSTumuxmMFnk4KFLErVBbeIuV8/X t/mYcBXLCZTtumHr060ddKpGcdt0y44wmkpRVu5pmHxNbDT1UakoN8+j+a7mcwedQraYVkqU r7tvyv69imWEy+ubLiyw7xZCWGk/PTbst7fwPI5JfeTVtrKJkoS8rV9Pw4LcqVKpOCaW2+9r fU83n8GXdw+tuLybJJk8Tc5WTvHZ2+ZC2m6e7L9SM4uUpWaVrNFhq1ZWknFfW/zPLz4s8LrJ 24Z45zcqjbsrq6uE/Eu3ZWdkyWzvJPa5bs0tnw729Si+3WwAdTIAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADh/9IjqeNDLMv6YoVJqviZrF 4jTOUV4UbxhGStaSlK752dNbbpncD439p3UP6y+0LNsbCr4mGp1fs2Gca3iw8On5VKD40yac 7Lbzvnl9fh8ftybv4VyvTUAAeuoAAAAAB3HLsFDLstw2Dhpao01C8Y6dT7u3xd39TlfR+AeP 6lwqtLRQfjzcWlbTxz/xaV9TrwAABAAAAAAAAAAAPdg81r4VqMm6tK1tEnx8mZ3CY2hilqpy d1u4PlfQ1QRbjJNNpp3TXYWMs+KZNznaUYrs3Y8ckniZ07KOpXjZWXy+Zj8LnUnaOKV12nGN mvmv5Hsr1Y18DHE0JXldSi7NOz+HP0MOXjxyxvsxxmXHSa0xaVlZ7kN2k4vb4inepT1Nu+m7 v6laf+6u2ltw+UfO8uplZHp4XcdbABuqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAANc69z6XTHQucZvSlONejh3GhOEYycas2oQlaWzSlKLd 77J7Pg+Kz6A/pHZ9FYfJ+nacoOcpvHVouMtUUk4U7PizvVut35Vx3+fz1vCw9eP2/bPK9gAO xAAAAAA3/wBnGASp4zMZKLbaoQd3dWtKW3G94/g/rvhiumsFPL+ncDh6mrWqeuSlHS4uT1NN fC9voZUIAAAAAAAAAAAAAAAAD15frU56Xtb3X3PIZPLad6bbSVndPu/9WMfIy9eO0vfT3qDU XUd1q2UF2+hDTNrdxSfpz9SblLXu/e3ISqKNRQ/aR85ld2ujHqOugA3VAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANR9p3UP6tez3NsbCr4eJ qUvs2Gca3hT8Sp5VKD51RTc7LfyPjlWxxuWUxn5HzD7R+p49XddZlmlCpOWD1qjhdU5NeFBa U4ppOKk056bbOb73ZqgB72OMxkkZAALAAABkMkwX6RzvBYV0/EhUqx1x1WvBby3+SZjzdPZ1 goVcyxeMlpboU4winG9nJvdPttFr/wBwHRwAEAAAAAAAAAAAAAAAABl8MlDDqK1J2XPr3/eY qnHXUhG9tTSv6GaScqdoxtJP1OD+oZ649E+xVyd079iG/iKXM2SaUdnyRi9KfaS/eeHjt1Ox AA6WYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB wD+kdn0niMn6dpymoRg8dWi4x0ybbhTs+bq1W62XmXPbv58V9e59HqfrrOM3pShKhWxDjQnC MoqVKCUIStLdNxjFu/dvZcHZ4WHtye36VyvTXAAesoAAAAAB1rovAPA9NUHNSU8Q3Xkm0+bK NresVF/U5XhMNPGYyhhabip1qkacXLhNuyv+J3GhQp4bD0qFGOmlSioQje9kkkkBcAAQAAAA AAAAAAAAAAAAv4OGvEJXSsna6vuZWpVV0uGmY7BR03qtWs7J/wCvoZNqlHDxUXaz3532PG/q Ge8/X9L4TvakkoRm6nv82+Jahqb1Tj52rPclFOUdTXkcnZFbqNtzzm0dhAB0KAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA032pdTx6V6AzHFxq ThisTB4TCOnOUJKrNNKSkk7OMVKfb3bXTaPjo7Z/SK6h+055lnT9GrenhKTxNdQrXTqT2jGU FxKMY3Te9qvZPfiZ6/h8frx7/bPK9gAOtAAAAAA92UZlPKM1w+OhTjUdJvySdrppp79tmzq2 UdS5XnNoYavorv8A8Cr5Z9+Fw9lfZu3c42SpznSqRqU5yhOLUoyi7NNcNMDvIOZZP17jsHoo 5hH7XQVlr4qRWy54lsnzu2+ToOX5pgc1o+LgsTCtFe8ls49t091w+Qh7AAAAAAAAAAAAAAAA ZPAxj9ltL9p339f9WPS1KraKdle7LdGNqUI3tFPd25JLi/CvsfO+VnMua1tx/wC1cUox8kdr L8y1Tbc/vXf0+BTUlJOX4epVvW1UlZStZfFHPLI027GADoZgAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABpPtbzeeTezHOqtKGupiKSwivTlOKVVq Em3H3fK5WbstWlbtpO2GPtlMZ+R8s9YZ9Lqfq/Nc5lKbhisRKVLxIxjKNJeWnFqO11BRXfjl 8mEAPfkkmoyAASAAAAAAAABewuKr4LFU8Thqkqdam7xnHt/r0LIA33J/aD7lHNqPovtFJfJX lH8W2vojeqFejiaMa1CrCrSlxOnJST7co4Qe7LM2xuUYqNfB1pQd05Qbeidu0l35f47AdtBq OT9e4HGaKOYR+yVnZa+acnsueY7352SXJtwQAAAAAAAAFYRlKaUV5u1yhfwcNda/Cir3sU5M vXC0rIqN6e627BO1JJ88IpeSScna75CtUnqbtQivNLu32SfB81nlLltvjjqaUcZN2g1Z778F dvDXr3T7Ek1JpU2mlzct31ampJX533KdVfTs4AOlmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADmXVvsP6Y6i1V8uh+hMa7efC006MvdW9LZLZP 3XHeTbufPHVXQvUXRuIcM4y+dOg56aeKp+ejU3la01sm1FvS7Stu0j7ULdehRxWHq4fEUoVq FWDhUp1IqUZxas009mmux1cXl54dXuK3Hb4MB9L9b+wbKc3hUxnTDhlmYSmpOhOT+zTvJuWy TcHvtp8qUUtKvdfP/UHS2edLYtYXO8tr4OpL3HNJwqWSb0zV4ytqV7N2vZ7npcXPhyfL2rZp iAAbIAAAAAAAAAAAMzkvU2Y5LUgqVWVXCp+bDzd4tb3t/V5b2783MMAOuZP1dleb6KfifZ8T Ky8Gq7Xe20Xw93Zd36GfOCG0ZL1vmOX1IU8bOWLwt/Nr3qRW97S78978W2A6mDG5VnmXZzTU sHiIymleVKW048XuvqldXXxMkEAAAHtwMqcITlN79l8e38TxHtw8Fop6nG74Uu/y/E5vMymP FT8r6Um4p20Lf/8A0rUaVFx2jByuktil6qm04KNN7RUk9S+ZHS9SjJ3SffdfQ+e6rpnxOC0U 0092t0QVlLy9/Xgq3KMmttL7vlC6VJLZad79wl2kAHQzAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8+NwODzLCTwmPwtDFYapbXRr01OErN NXi9nuk/oegAcE6x/o9f73GdJYz1l+j8XL/mdqdT/wCMUp/FuZxPOMjzTp/MJ4DN8DXweJjf yVoW1JNrVF8SjdO0ldO2zPucxmfdO5T1PlkstznBQxeFc1PRJuLjJcOMk04vlXTWza4bO3i8 3LHrPuK3F8Ng7Z1b/R6zDB6sT0rjPt9Lb/ZMVKMKy91bT2hLfU99FkkvMzi9ehWwuIqYfEUp 0a9KbhUp1IuMoSTs00900+x6PHy4ck3jVLNLYANAAAAAAAAAAAEqc50qkalOcoTi1KMouzTX DTN2yXr+vCpToZtCNSm3Z4iCtKPO7ilZ9uLbLuzRwB3PB43C5hh418JXhWpP9qDvZ2Ts/R7r Z7noOGYPHYrL8Qq+Erzo1V+1B2urp2fqtls9jf8AJevqGKqU8PmdKOHqSdlWg/u+/N949lff 12QG6JXaSRk//LVlZfDgxmHnTq+HUhJTpySkpQd00+GmZGUrRk9tuLnnefdyYk+9pVqspe82 3faxRzUNm1f4kL3p3fOq5R2nbb6/67HjN5dpycmrOyaLcpSUNKjd2334ZKdpJuSuu6E61WcN KX3fCe3BOh20AG6oAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAABrnVXQvTvWWHcM4y+FSuoaaeKp+StT2la01u0nJvS7xvu0zYwTMrjd wfMPW/sLznp+FTHZFOecYFTS8CFNvE005O3lSamktN5Rs7tvSkmzkx97mo9W+zTpjrPVVzHA +FjXb/bcK1Trfs8uzU9oqPmTsr2sd3F5tnXIrcf0+Ngb91j7Iep+kfFxP2f9I5ZC8vteETlo itTvUh70LRjdveKulqZoJ6OOeOc3jVAAFgBVJvhCUXGOpqyK3LHH7RQHQukvZbV6m6Z/TVXN Vg4SquFKmsP4mtJ2bvqVt77WN1wfsq6YwjqeLSxONUrW8eu1ot6aNPPxvwTLv4yy5scenCDJ 4Hp3OczjSngsqxlalVlphVjRl4bd7e/ayV+W3ZH0LgensmyydCeCyrB0alFaYVo0Y60rW9+1 27d29zJXSvui8xY3yf1HDcF7KepMVTcqyweEkpW0V61216+RSVvrfY2bB+x7AU1U+3Zria97 aPApxpW9b31X7eh0y3rsUhulq2foRdRS82d6ajDpvK+nvCoZXCtFuC8Rzrylrdl5nG+m7tyk j3WhoWubc+bRd0TxE/Exbk9N/wB3wLEnGFRKK1L+s+TwfNz3yV3cEtw3SU3UkoRVvgXGvdUH pklZ7XI2k2t/L3+BGo1C2nzLu+LHDNt5E4z0OXhPTfa/P7yzaFnG1iSkrrUtmR0pyVP9m+r5 f6sWiXdQAbqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAABz3rf2QdO9XwqYihShleazmpPGYeldT8zctdNNKTep+baV7btKz6E C2GeWF3jTT4ezvJlk2f4/KvH8Z4TFVcP4unTr0Scb2u7XtflmPahF2slu+Vc2TrZS/X3qO/f M8T/APbIwD814uO8fibZcvLl+We1eYRsr2fHFy3iE5SjFXblwl+4upJRknuuzPf03l0876qy vLqau6lZJ/Jbvs+yHFh7Xuq26j6IyXBxyvobI8DocKkKWtxd73k7u6e/fg9Fmo/NHpzGUViJ U4e5SioQXyVjzJpSSb5juezwz1wkebld2ordJFJJN8lZPTa3dlNnJJ7X9DVA227bFVJa137I g73uuFySvCnh62Ilv4MJSXx2M+XrFfjn8mtV4VauKqpRVtXF12I1PHT3V1e1ro1KnjKmIxFf Et7yk0vgj1fbK1O0tV1biyPnPImWWdu3qcdkx7Z51WvLa0vQQnB3dRapdlxYwP6Qqpp9+3H8 i5TzKad5fg0jGSxf2jOwnBPUrK29mykqt4pvSn6xMOszVr6fy/zJrMIylC90v3jdTuPo0AG6 oAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAPjv2iYTEZf151BDEUtFV5hVq21J3hUk6kHt6xlF+vruaxtLVO1vLt8ze/bLZe 1XOpWTf3Gz/9CmaHNJS0xd0zeTplfpGTlRcrbxR0L2M5bDFdZvMZJqOEpN03bbW1a3HNrs57 U+7UoLtFbep172IYOdPLs0zKqpqivuqSa2lUa3fG9k13239To4MPrLlv8XR8U28RN3V77XLM veTXpwyUpXk5Wvd3dyDfmX/Lfc9aTUefapZNb7q/cPaLl37fMpblepVNNtN3XCZZJuk7Pk8W f1XR6VxcU96i0J+n+rHsiuzl+RhepL16VDDPeKld/HZnN5V1g14u8tNCw+W16eGprxbbJ+6v 5k6mFrQSepyb9ImelRlJ2cXzyRnRblvGzfF1sfN5Z3b05h019Rrxf+7b/wDayDr1Iys6U/pF mwSoK+0X82i3PD0+XFfgJlU+umFWIuleEo/NWJrER24MpLC05OP3cfwR555XSbUtCvzzx+Y9 p+U6fTQANkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAA+UPbKl/+V85Vm3LwP8A6KZocI2U1J7x7+h1n2v9JZtW66zLOMNQ eJw9bwrU6EJzqRtShHdJWW69eDk9WM6KqqvTqU6jdpQlG0o/NM6v7WUxlrD2lt0t1GrOepqd ttz6H6Cy2WSezjAQnFqpiajrzjNbxu9uy7WPnmlQeKxeGwlK7qVakYRTty2kj6mxNFYTA4LA qWpUKEE3a13Y7PHw3Yw57qaWFJ7p990E7STvZ32fqIptqS9LENOmcdLsvQ9FyKu9pKWyve/I 974WDk9Ub7t33KJJzun8bgSTvOPomYDM5KrmlbT2e5nE9Ck36tmAl58RVqN7uXPc83+oZXHH p1ePjurUrabWv8kRcE7KyduNi9oVyCVnJp8cHgbekteGrcL8C1KnF09UorT6nod7rttdlLLS ttl+RFpXl8JNK2yiNEF2PRGnePqS0px5+ZI7wADqUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonUL/wC28Wrv9nbt7qNK z7ojLM8p1F4WGwVWpF/fww6bvbnazvt6m69R/wDfuI2/q/8ASjFO9rdj6Hhm+LH/AIn/AKeT yZWcl1+3J+n+isfkntIyeONd6EJKvCr5fMld8KTfOx13ES8WtVnay1OxajdbNWCjtGK7F8eO Y3pXLkuX1KLWiS9Vt8GQtqvF9lYk3aSSaIJaFa+5dXpWM01x+IfqrccFIq0vhbgrsnfd78BM W61RU8HVkrOy59GYGl95CMuL3vfm5mcZL7lRitm7tdjEqOiLv7t9jxv6llN6d/i/Nqaed/xK WSXBVxcaerl8tFVH3v8AiV4njSO2LdtVnaztZojsmlHjuXF5U23x3KOCi+SdRKCva2y+ZSCv G3e97koxcU+/zEFZpEWRH/LuoAOtQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGl9TUY0861Ju9WnGTv2e8f4Iwl7Tt9DPd Wq+Z0t//AAV++RgGvdPoPG74sd/p5XN/kolaSSfz+BVy7fgw7Slte9uxS6el8W5sbs1FZOMr 3Tb/ACKe67OzZThJd/T0KyTjZPm5IPm6ts7MNNSu9t+CllJJLbe8viTbc+9muxXLaYxOeVXR wuqL25sbNS6Wo4jJ8HVVXRUqU4zktLfO/qad1LUU8PPR/wAKS+qOsU6caWBw8IK0YU4pL02P B87P25NPT8fHWDTcf01TwWElXr42nTpvyqVRaYuXZXv3MZ+hcTNKVGrQmuPLJv8Ager2zVau H9mterRq1Kc44ik04Saa83wOG4TqvPaNKMoZrjErbp157v8AE4PW1v1PrsjyTG2s6FWXyg3/ AAPLVwWMowU6tCcYLluDSX5GD6DxfVPVOTZji8Pi8XWr4asoaVinGKW9vel8+5s/2vq/C05e LkEqkE+JY+k9/nuVyxyiZr8Vjne+yuRt+09muF6l+fU+PU7V+mNco7T/ANvitL78LcrDqbLq lRQxGVeE7rXH7S24r4bK+25GrU/93bAAdTMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGm9WP8A7VpKz/3K/wCqRgotu6Zn uq/+96X/AKC/6pGBa8y3PoPF/wAOLy+b/JRO26RRJRVtrc39SV9kuGQ3UIq3zZuzJpXT7si9 rfMlsqbfL7FE7Pd78r4EzaFOIJx5fLKXSUpLayvcNpNLt8OSFd6MO7fiymeWsbtfCbrAZxGV XD7Jt64p2Xa6OrU80wNfC0JUsVRcZJNLWr/Vcr5M5o467JpNPm6LkZzppxjNx0q6sz5rny3y W16nF1i2L2j5RPqnomvluCrUlUdWNRynLZKO/ZM4BT6QzvDU4wr4LRzpfiwd/wAGdmo5tjoU 1GGIsl6xT/gX/wBY8yglad7v0jt+RnjYva0X2XdUVOhsDmeDx+Ec6eJrKpCfiJJNJpppJv8A hszd6HtJ6fq4+pialbwas6ShJ6akuHx7h6qPVGI8RKtScoX3s1t8eC1jcVkeaR0Y3D4mUdWu zhBrVbne/qxlqpxy1+Nvfg+osijmM4wxmGTqftxxEZJ9/X5nswtLpzEYqrWrU8mructUZSjT lJv4t97moz6e6VxEtVOpjcPKXGiVKCj+WxWXQuHr0ZTy/Ns1py0PQ/tEbKXZ2SV1uu5X11N7 Wlm/js4ANmYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAANN6tv8ApSk07WoL/qkYGXvbc+vobR1ik1gk+PP/APyaund/Nux7 3iXfDi83nn+pUoWk1K94p7kZe8rPh+hWS/Z7IoqlJXTmrx53R0bkZa2q1qTu+9yDi9N+6Hiq 3MbP1IurFp2fu8iZJ9RpWjZ7vd/A8+NlKNGK/rNt3PQ3FSSju2Yfq/GRy3KIV1/vJPS/h+TM ua7w0vhNVKn5loT35JOKuk3ZmqYbqOpGkpauI3tb/I9+H6gU9LqzvF9o2/yPA5OPeW3fhlNM vOc8MvtFNObi09CXJuWFwWTY/B06kJ0sLUe8oePdr8f5GhxzfCTtGTe3y/meiGZ4aKgqVWcX vqepLb8TK8dnxpMo3iHTeW1JaadfU+bRnF/wMXPC5NTx1fCy8aVbDpOpDyO1+LoxviYuMI1K OKrwuk01UadjE5pkmHzbFyzDGUXVxFlF1HUd3ZJK9n6Irqr43GfY2avl2USn5MXoj3i6Lf5p ItrLcpi044yz9fCnt+ZpNTpbL5JpUdMrf1pP+Ji8T0hSqy+6caaXdyaf53Jls+luH6/8/wDx 9NgA0UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAABqPXFaNF4BzdovxLv/4mqLGUrrVJRaV1vybN19XwtL9H08Unon4m6ttb T6/M0BqNShVnGeqMINxd7tM9Tx+S48UkY5cUyu6yVbMowpTere22/wDmXcroyx9WFPVHVV31 N9jVVOpicIk56Wu/J6sDmNXCKKnu6TXhz27fCxXPmuWX8k48M/DL4ytLC4udGotKg7N+jR5q uOlTg6kN4vv/AKR4M1z55hpdT373vbv+B5MNjl9ilHZRhU5uP7m5/GtJwT8xl6ebxlGD7/6+ Br3tCxcsRLLqK9yMVO/1f8i5WxEZtyjLnvfc8uPUMZQSxF52Voy5a+rMcuXKdWovDPw1qNS0 VFfiTp1pR2Upbej4I4+g8uhSrKadKbsru7R54VoJu/JluKXGx7liqseJv53L1HMKtKN/Ecm3 vd3t+JjYVI8cK+xVVI302u/W5MsQzf6drJK0t13sv5Hqw/UmIpVIWrpK++0b/mjWk4/Uo2lO /cnY32PVlGUPvFGUkrXsv5kaee0JXjFKb57N/vNFcmmrPZko1JeGpfkVvf0nT//Z --------------000004090104020803030004-- |