| ARToolKit | Mailing List Archive |
|
| From: | Pedro Cervantes <pedrocp@u ......> | Received: | May 30, 2003 |
| To | artoolkit@h .................. | ||
| Subject: | Wrong video display ! | ||
This is a multi-part message in MIME format.
--------------050208070109070600060709
Content-Type:
Content-Transfer-Encoding: 8bit
Hi, I'm trying to use a USB Logitech Quickcam Pro 4000 under Linux with
modules pwc & pwcx.
When I use "camstream" I get a 640x480 x15 fps video. But in ARToolKit I get a
colored square over the video. The problem is at the rendering to the window
stage because I can have 3D objects even when the patts are behind that
square. I captured a frame from "simpleTest2" but the same happens on every
ART application (see attached file). Any ideas on how to correct this?
I'm using the Uwe Wössner's ARToolkit 2.61 modification on RedHat 9.0
Here's my vconf inside all my applications:
*vconf = "-dev=/dev/video0 -channel=0 -debug -width=640 -height=480";
... And here's the debug info:
=== debug info ===
vd.name = Logitech QuickCam Pro 4000
vd.type = 1
vd.channels = 1
vd.audios = 1
vd.maxwidth = 640
vd.maxheight = 480
vd.minwidth = 160
vd.minheight = 120
==== capture device channel info ===
channel = 0
name = Webcam
tuners = 0 flag = 0x00000000
vc[0].type = 0x00000002 CAMERA
=== debug info ===
vp.brightness= 32256
vp.hue = 65535
vp.colour = 32768
vp.contrast = 31744
vp.whiteness = 30720
vp.depth = 24
vp.palette = 15
error: RGB Palette not supported, trying YUV420P
=== debug info ===
vp.brightness= 32256
vp.hue = 65535
vp.colour = 32768
vp.contrast = 31744
vp.whiteness = 30720
vp.depth = 24
vp.palette = 15
===== Image Buffer Info =====
size = 921600[bytes]
frames = 2
Image size (x,y) = (640,480)
Usually I would prefer to correct this myself but I have a really close
deadline for an arts show. So any help would be apreciated.
Thanks in advance
Pedro Cervantes
--------------050208070109070600060709
Content-Type: image/jpeg;
name="captured.jpg"
Content-Transfer-Encoding: base64
Content-Disposition: inline;
filename="captured.jpg"
/9j/4AAQSkZJRgABAQEASABIAAD//gAXQ3JlYXRlZCB3aXRoIFRoZSBHSU1Q/9sAQwAIBgYH
BgUIBwcHCQkICgwUDQwLCwwZEhMPFB0aHx4dGhwcICQuJyAiLCMcHCg3KSwwMTQ0NB8nOT04
MjwuMzQy/9sAQwEJCQkMCwwYDQ0YMiEcITIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIy
MjIyMjIyMjIyMjIyMjIyMjIyMjIy/8AAEQgB4AKAAwEiAAIRAQMRAf/EABwAAQABBQEBAAAA
AAAAAAAAAAACAQMFBgcECP/EAEkQAAIBAgUCAwUEBgcFCAMBAAABAgMRBAUSITEGQRMiUQcy
YXGBFCORoRUWQrHB0QhSVpXS4fAkM2JysiU1Q1NzgpKzF6LC8f/EABoBAQADAQEBAAAAAAAA
AAAAAAABAgMEBQb/xAAqEQEBAAICAwACAQMDBQAAAAAAAQIRAyEEEjFBUSIFEzMjMnFhgaGx
4f/aAAwDAQACEQMRAD8A7+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1/wDU
To/+ymR/3dR/wj9ROj/7KZH/AHdR/wAJsAA1/wDUTo/+ymR/3dR/wj9ROj/7KZH/AHdR/wAJ
sAA1/wDUTo/+ymR/3dR/wj9ROj/7KZH/AHdR/wAJsAA1/wDUTo/+ymR/3dR/wj9ROj/7KZH/
AHdR/wAJsAA1/wDUTo/+ymR/3dR/wj9ROj/7KZH/AHdR/wAJsAA1/wDUTo/+ymR/3dR/wmYw
OAweWYOng8BhKGEwtO+ijQpqnCN227RWyu239T0AAAAAAAAAAAAAAAAAAAAAAAAADRuoEpZ5
i732UHft7sTFyUpPbl7mQzWUq2bYlzd/vJRe3ZbL8keG7cmns7Wjbsl6nBld5VvPiE4ScduV
yUV3GUpyu33sSaelb2uVmnJOUdlx8ivadrc3aTi+dJB3ilJ7rj5Fzid4O6XDItxqK699ytb+
I2LUoanCN7NuyKylao1bZeiLlmlu+CMt5t2+ZOjaCjGKi1JSvzZ3sRqvVKyTXzReUEoJxSX0
La5u92JRbdlpja7tzbgtJXV7dz0JbtuxafvNLj0J2It2kmvwINapOTlva3HBcte5HZWu+/oP
ptYgpNvazI1G2lG+zLs52Udt9RbTtK7Wy7jWh2cAHe5wAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaDmElHM8Xq2++nb8We
FyTqO1lty+T15ir5pinO6+/nb/5M80oRbsrX+Jw2d1tLaomtlvconZ8782Kxd7ycWmtt1yQl
Ja9KW/r8CvxKkpKMNTe7dkNNlvGz55Lc03Ky81n33sTW272ky29iCamrrduQnCc3GK5bui4l
ZfK9vqR80pbP3Pe+CI1BCTtK8na3OxBtJK7tdk21KTV/yLbjfRvZcjQlKWlJPlO1y0oqMm23
u72LsrPvfcgvNduyUdtx6h7z2tYs6fiy9fRaXZlrduy23JNLUWlUep+VK9ylKL1XW6RchHS1
JPh8EW9FOWy1Pv6EjsQAO1gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQM0t+lMQ3fatL97PLdRfr8SObV3DNcYuyrz/6m
eJ156FK+z4OHL6229rldWuub7EbwjHVJWkYjM83wuT5e8TjMRClJt6Iykk5bX7s8VHO5Zn0v
DN6alBVKqjFS2ulK3r/EjVNxsUHCGqU3vJ+WxVvUt+V+Rr2Y5hXp1sqUWl4tV6o7+np+BkZ1
6katSCezfL7E6qNvU7Tajyr3ZVy0vkx0a04TbcmrruyE8RJyak1xt6iYpZGVoxUnt6sg03WU
uy4Z4ITq1asaSlu+NjXq3VFOp1XRyfCedKpat20r6rf6Mn1PZuTeuppS35Lcn4kUovbv8DHZ
bGp+lcbPxNoS0RVu3+kZNJR8rVm/qPiN7Rabju+eF6Efdte6b4ZK3lsveT5KTW8b7pBZFx02
vvchPd9i7zF77W+v0LKd36W9SJCuxAA7mAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAON4//asT1NXzH7vBrFVqEVzvGbs/
Lvvbg8mT42WH6Qp4vM56VQbUHa+qHZeVbdi/1RqxWaYj9Iz8HLsJjatR7atdpSt7u6NExFTE
+0TOHSpx8HIsNLTGN1LXbtfyyWxzWdrbVw9F+0DqWrVxCqrJ6Eb04eNeMnf0a22fovmbfmdG
hgsho5fhYQpUFUjoiko8NdlsZLDYahgMJQwuHjopUoqMVdvbtyYzqOooPBUrK8pRmnb47lbd
pW8xT+35BF2c/FlqXpsZbETUK9SWpKOqyb4uYzGR19RZLFPdym//ANWYrr/N50MfQy7AzVKr
Rl4k23pU779nvz6CYpZTGZ1l+HbhOvFySbdpx2/M8eH6iwGJxGiDcptbLyvb154OfYmlUxeM
1KtVdSq94qTa35svTn8yWGjPC4ipgsvrRxGK8N66ylrjTTvdKS3TsaTGaV9q2fqrq+FJxweT
0o4mpZ+JLTrS+F4y/I9/SWRUcoyiniZxhPFzinVqQlJpPfez/kaZOhQo4dUMPGqq3M60ktbf
/Mt7G3dCY6tiMPisvra52inCpVu7NX2uxo7bHkS11cdUlvLxf5mUqN3c5bW4+BjMgV4YyVua
ruZJtzVuYszyna8+KpftPuyNm2vTdoubKFm9/kW2pOOzV1stuCuk7RSsry4LTg5Q0arN7pkp
xk427dysFx6rYn4fXXwAdjEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHzFjcxxvtMzPE1pR8DLqblVUbqV23dR4jLh8/An
hsDneApqhQh4dBPyq8JfLnc6DFwo4eGHpwsobcluo9SVzm9ltNJwVLPlnWEq1XahCp5/c80f
3o2bPtLzzL6dvLUUmvge3lJ23WxiM1jqz3BQtf7rV+aIvf1OlzEp0uqcl3Tsqn7n/MxXXmT1
MfSw+aYSMFi6bfiOaehx+Nlfj4mSrzliessvwsYNyowk7XXGn/Js13rDP3j8bHpvJ/EnUcvv
atOq6bXdqzSvtfuJ18S1zC1K+bVv0fk9PTLTprYxwvofLUZRvZfM9tPpvMMu1xwcE56HrqtS
1Tb53S3RumT5Lgsgy6NHD006kt51HFam/mkj2042i22n3L+yvq5vS6fzitdVHpblu1rul+Bv
eR4CGV4KMYxXi6VeTW7a+h7IwVnK1mSg0vNJpJbFLtOkun244GrJWcpyk2mZCnTjCD37u1/Q
8PTKTyeGpPVKUvM+Oe579rJb/Qpd7WkI+6lpv9SFR6YxhFee+7L0rRhDazvvf0IRhpk5SfN7
OxCVPLuuE1v8fQhGFo2XPLJK8nbvfkjUk4TtF/S3clLroAO1gAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADjKzKilZS/J/y
I/pGlvd88bP+Rm/slFKKavvvzsU+y0ptLRZrh3f4HJ7L6YNY+js27P5P+RYjF5hn9LE0d6cK
ehv43Xr8jYpYenZRcb2laxKlShRlOKVpSW3yHSdNZVWWX9VYuvUpvTUorQ1Jeji/XtJmMyXK
8Hk1avWoy1TrVXUbs1a/zbN4nRjOK1K9tkyCw9GnFXjf43ZO4aa/UxcXqb4fHwLUcS3fRCck
v6sTZXhqcU/Lz2uR+zUtKTS8vZkbRWv+NVcdXgz0rnyO558ROrUwdSlGhUtUeltwd0mbT4VJ
Rk9ENKV35Tz+EprVGnDQnf3R7J0s5Vh3g8tp0X6u1+T0Qulfb5Mu1FFNNXS+PCI1PLKzVvoV
t3UxRxlOqtasvityNR+ZJO6uXJyvPU27/AstuMbu23f4hMUTak432ZbSbcYd+5NXbXq92Vaa
krNcdxodbAB2sQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAc8lFQ8zd2USck5N3j2jYrKDUlN7tNIo14cvLvc4NtEXFWi27
Rvf5FKkL1IzS4Kp6pRtsne/w+JSN3Uu1yrfInYg1K1uHcpJuLs1wTcHdJbpPf4oqo65TcnaV
7snadLKe8pPYhKzkov6r19C7UUZSilsUleLjfZrsNCxUTmnFe9ay+HqRotxUqba0pJ3L1FPV
OXdSKS86qSfMVwSlCreTjZ2hbe/8BLztylyFZwcXxb8CF22lfZ/ighVNXkmk32t2LUldOE2k
r32LknpqQta1rP8AmW5xcqmz25IuyUlJRn5Wtl2Ld5tp7b/l8yena8VuvVCLTaa47iJdbAB2
sQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAc+nHyaHuncjOUVRT/abtb0Kxlu0ndL8iEY3k5p+Xs7cnFNtBaraJK0b3+pST
tNSg94riwcm0k9t+ST2g7P3rCXabVpRh4STleepytbgjGdtM/VE7KT33f7iis09r2bTXoTP+
pISUZvU3Z/wKTm4uLiuVbkS06W0W6d9UvQjUQK0FL4u6+Ba1Nyd9i7J2d+bkG26ija0rXa9A
bJc6UuNiyn949NtkXLOrNq9rcfMNfdamrW+tyYsg4qW7I2Stu+SUm1BtOxDXe2y3dtxoItxW
75YtGNlG2/Yg9XmTstMiqbcItLzb8rgaQ62ADsZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA580lJNJbstyi0oxS9S6kpN
xV1vbctykqdR7Xs+b8nE0i3BXtfn1KtJakuZPT8icpeFJPlItwvepVi9ptX+ZAKkqCqR/rvk
rKXktxbuIq732sQd46pRjtw9/wAyye1J+aF1yktxfXGaa8ytt8PUhK7qKovTgpUcnBNR377g
u1HFOMV3vcbxaem7t6k3C0VctuppW0eXtuEbR7tt7lJzXheZ8SutiqleMru0uxTw5xvGb1Pl
O1rBK3NSdHTJWle7XoUUfOt+HcuSc3Jv/wAyVk/gu5GpOMFqirt8kbNoSu5yb9blIuyY0ycm
2r+hWUXoblvKW7XxJiY60ADsYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0GVPaLXKe7LDvKa+B6b2hJc/Eg4q9rbnVzeB
L3h04+Ly9f7nnlFug1e9yu2j1J1Kbc029ub24IpXT1L7trdnm58eeF1Y7cc8cpuISfkS9Bf/
AIeV6+ovN002tk7FJSU7K22nYz0vtVJWdt36Fpzaj8yrnaWq2y2t8fUhKT0Tvu2n+YmNTsnU
1pPhkJq7T9NyULRoxgnukE3bfh7CYzYaYzin6bkZS1Xa232+BXUvD032uW5Jt2TsibpGoba1
Nq7XcjUpuo3vaCfJJ2Sio+6iEko1Wu8NiJpO0lJONobpbJkNN6d/V/xJ38qfxIxi5X82zbdr
BHTrAAOxmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA0nrj2oZB0PSdKvU+25m7qOBw84ucXp1J1N/u4u8d2m/NdJ2dvnTrj2
oZ/1xVdKvU+xZYrqOBw85KElq1J1N/vJK0d2kvLdJXd+ji8bPk7+RFy06jjvaNlVLNMJlmVK
OaYqtV01fCqKNOlC13LXZqTt2V+Hdp7PY8DmtHGQWiWisv2Jvd7dvVHB/Z1g/FzbE4txg40K
SirrdSk9mvpGS+p0k9nUcd8fHWm+tptc9yEo66cUrxW+zXBreDz2vSnCOJfiUkmm0vP2tv34
fO+/PrsVGvTxCVSlUU4L+q/ruYZ8GOU1Yxsz41uSlTio6fJ63LTWzS9297nuvrUtrKR5ZUGo
Xj2drLc8rn8K494Ovi8mXrJZ1abd7q3yJSjGCu3d2vYq4Rsm9mWqsXp8u/ocNln1172cuKfv
S2a+BWs1qS4vt8iqehyafmaIao3i5Lh/gVT8VqtOKs72/eQldq3oicYrU0+ZK6KalFcbruNd
ii2jeXK4RGOmLfq3dslbZzb93tYiuNKXLvcjf4Toe7b+Fi0lKm7RfzZOKs2797EXdcu/oEad
ZAB2MwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAeDOM7yvp/L54/N8dQweGjda6sranZvTFcylZO0Vdu2yOF9ce3/EVarwXRsfBpK6
nj8RRTnJqWzpwd0otLmau9XEWrvXj4c+S/xiLdOwdVdddO9G4dzzjMIU67hqp4Wn561TaVrQ
W6TcWtTtG+zaOAdce3DPOoarwuQzr5Nlyum6dRePW811JzSvDZLyxfeScpJ7cyxuOxmZYueL
x+Kr4rE1La61eo5zlZJK8nu9kl9DznpcXiYYd3uqXLYAXsJhp4zGUMLTcVOtUjTi5cJt2V/x
OtDqXRGD+ydM0JOM4zxE5VpKaty7K23Dik/qbGW6FCnhsPSoUY6aVKKhCN72SSSRcCAuUMRV
w1RVKM3CXF16FsAs39bJgs+pVYxhiV4VS/vL3f8AIy8Nr2XxdzRD2YHM8RgnaL103s4Sey37
ehFxlc2fB+cW2zpqqlpst7lmcJxlGnBala7drljAZjSxlKNmo1Wlqp3vpfztuvj8uD3U5eW/
5nHz+HhnFcObPj6ry1Z2qaUnZJJXIXV7Pg9Fah4kozg0pJ8Pg8k1KOtyvzb4Hkc3jZ8d7d3H
zY5SKR2m99m9iUYOVRwav6orGK0qV1db2IOo021dSfc5m+1uUlWqw0PyJ7fMq42c48XZKEVD
S7JLfsQ17/JtC2piKlpWlMJapWW+12/QpJWep+t1YNeFPVy3u0iB1oAHYyAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxHVPUGH6W6YzDO8
VHVTwlJzULteJNu0IXSdtUnFXtte72JktuoMnXr0cLh6uIxFWFGhSg51KlSSjGEUrttvZJLu
cb609v2ByvEV8B0zhIZhiKU3CWMrP/Z7pr3FF3qL3le8VdJrUmcX6w6+z/rfF+LmuK04eOl0
8FQco0INJrUoNu8t5eZtve17WS1g9Li8KTvPtS5fplM+6hzbqfM5ZlnONni8U4KGuSUVGK4U
YpJRXLskt23y2YsA7pJJqKgAJA2foXL/ALZ1DGvON6WFi6jvDVFy4ir9nvdf8prB032e4LwM
kq4qVPTPEVXaV76oR2W3bfX/AKsBtwACAAAAAAi3GSlFtSTumuxmMFnk4KFLErVBbeIuV8/X
t/mYcBXLCZTtumHr060ddKpGcdt0y44wmkpRVu5pmHxNbDT1UakoN8+j+a7mcwedQraYVkqU
r7tvyv69imWEy+ubLiyw7xZCWGk/PTbst7fwPI5JfeTVtrKJkoS8rV9Pw4LcqVKpOCaW2+9r
fU83n8GXdw+tuLybJJk8Tc5WTvHZ2+ZC2m6e7L9SM4uUpWaVrNFhq1ZWknFfW/zPLz4s8LrJ
24Z45zcqjbsrq6uE/Eu3ZWdkyWzvJPa5bs0tnw729Si+3WwAdTIAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADh/9IjqeNDLMv6YoVJqviZrF
4jTOUV4UbxhGStaSlK752dNbbpncD439p3UP6y+0LNsbCr4mGp1fs2Gca3iw8On5VKD40yac
7Lbzvnl9fh8ftybv4VyvTUAAeuoAAAAAB3HLsFDLstw2Dhpao01C8Y6dT7u3xd39TlfR+AeP
6lwqtLRQfjzcWlbTxz/xaV9TrwAABAAAAAAAAAAAPdg81r4VqMm6tK1tEnx8mZ3CY2hilqpy
d1u4PlfQ1QRbjJNNpp3TXYWMs+KZNznaUYrs3Y8ckniZ07KOpXjZWXy+Zj8LnUnaOKV12nGN
mvmv5Hsr1Y18DHE0JXldSi7NOz+HP0MOXjxyxvsxxmXHSa0xaVlZ7kN2k4vb4inepT1Nu+m7
v6laf+6u2ltw+UfO8uplZHp4XcdbABuqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAANc69z6XTHQucZvSlONejh3GhOEYycas2oQlaWzSlKLd
77J7Pg+Kz6A/pHZ9FYfJ+nacoOcpvHVouMtUUk4U7PizvVut35Vx3+fz1vCw9eP2/bPK9gAO
xAAAAAA3/wBnGASp4zMZKLbaoQd3dWtKW3G94/g/rvhiumsFPL+ncDh6mrWqeuSlHS4uT1NN
fC9voZUIAAAAAAAAAAAAAAAAD15frU56Xtb3X3PIZPLad6bbSVndPu/9WMfIy9eO0vfT3qDU
XUd1q2UF2+hDTNrdxSfpz9SblLXu/e3ISqKNRQ/aR85ld2ujHqOugA3VAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANR9p3UP6tez3NsbCr4eJ
qUvs2Gca3hT8Sp5VKD51RTc7LfyPjlWxxuWUxn5HzD7R+p49XddZlmlCpOWD1qjhdU5NeFBa
U4ppOKk056bbOb73ZqgB72OMxkkZAALAAABkMkwX6RzvBYV0/EhUqx1x1WvBby3+SZjzdPZ1
goVcyxeMlpboU4winG9nJvdPttFr/wBwHRwAEAAAAAAAAAAAAAAAABl8MlDDqK1J2XPr3/eY
qnHXUhG9tTSv6GaScqdoxtJP1OD+oZ649E+xVyd079iG/iKXM2SaUdnyRi9KfaS/eeHjt1Ox
AA6WYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB
wD+kdn0niMn6dpymoRg8dWi4x0ybbhTs+bq1W62XmXPbv58V9e59HqfrrOM3pShKhWxDjQnC
MoqVKCUIStLdNxjFu/dvZcHZ4WHtye36VyvTXAAesoAAAAAB1rovAPA9NUHNSU8Q3Xkm0+bK
NresVF/U5XhMNPGYyhhabip1qkacXLhNuyv+J3GhQp4bD0qFGOmlSioQje9kkkkBcAAQAAAA
AAAAAAAAAAAAv4OGvEJXSsna6vuZWpVV0uGmY7BR03qtWs7J/wCvoZNqlHDxUXaz3532PG/q
Ge8/X9L4TvakkoRm6nv82+Jahqb1Tj52rPclFOUdTXkcnZFbqNtzzm0dhAB0KAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA032pdTx6V6AzHFxq
ThisTB4TCOnOUJKrNNKSkk7OMVKfb3bXTaPjo7Z/SK6h+055lnT9GrenhKTxNdQrXTqT2jGU
FxKMY3Te9qvZPfiZ6/h8frx7/bPK9gAOtAAAAAA92UZlPKM1w+OhTjUdJvySdrppp79tmzq2
UdS5XnNoYavorv8A8Cr5Z9+Fw9lfZu3c42SpznSqRqU5yhOLUoyi7NNcNMDvIOZZP17jsHoo
5hH7XQVlr4qRWy54lsnzu2+ToOX5pgc1o+LgsTCtFe8ls49t091w+Qh7AAAAAAAAAAAAAAAA
ZPAxj9ltL9p339f9WPS1KraKdle7LdGNqUI3tFPd25JLi/CvsfO+VnMua1tx/wC1cUox8kdr
L8y1Tbc/vXf0+BTUlJOX4epVvW1UlZStZfFHPLI027GADoZgAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABpPtbzeeTezHOqtKGupiKSwivTlOKVVq
Em3H3fK5WbstWlbtpO2GPtlMZ+R8s9YZ9Lqfq/Nc5lKbhisRKVLxIxjKNJeWnFqO11BRXfjl
8mEAPfkkmoyAASAAAAAAAABewuKr4LFU8Thqkqdam7xnHt/r0LIA33J/aD7lHNqPovtFJfJX
lH8W2vojeqFejiaMa1CrCrSlxOnJST7co4Qe7LM2xuUYqNfB1pQd05Qbeidu0l35f47AdtBq
OT9e4HGaKOYR+yVnZa+acnsueY7352SXJtwQAAAAAAAAFYRlKaUV5u1yhfwcNda/Cir3sU5M
vXC0rIqN6e627BO1JJ88IpeSScna75CtUnqbtQivNLu32SfB81nlLltvjjqaUcZN2g1Z778F
dvDXr3T7Ek1JpU2mlzct31ampJX533KdVfTs4AOlmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADmXVvsP6Y6i1V8uh+hMa7efC006MvdW9LZLZP
3XHeTbufPHVXQvUXRuIcM4y+dOg56aeKp+ejU3la01sm1FvS7Stu0j7ULdehRxWHq4fEUoVq
FWDhUp1IqUZxas009mmux1cXl54dXuK3Hb4MB9L9b+wbKc3hUxnTDhlmYSmpOhOT+zTvJuWy
TcHvtp8qUUtKvdfP/UHS2edLYtYXO8tr4OpL3HNJwqWSb0zV4ytqV7N2vZ7npcXPhyfL2rZp
iAAbIAAAAAAAAAAAMzkvU2Y5LUgqVWVXCp+bDzd4tb3t/V5b2783MMAOuZP1dleb6KfifZ8T
Ky8Gq7Xe20Xw93Zd36GfOCG0ZL1vmOX1IU8bOWLwt/Nr3qRW97S78978W2A6mDG5VnmXZzTU
sHiIymleVKW048XuvqldXXxMkEAAAHtwMqcITlN79l8e38TxHtw8Fop6nG74Uu/y/E5vMymP
FT8r6Um4p20Lf/8A0rUaVFx2jByuktil6qm04KNN7RUk9S+ZHS9SjJ3SffdfQ+e6rpnxOC0U
0092t0QVlLy9/Xgq3KMmttL7vlC6VJLZad79wl2kAHQzAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8+NwODzLCTwmPwtDFYapbXRr01OErN
NXi9nuk/oegAcE6x/o9f73GdJYz1l+j8XL/mdqdT/wCMUp/FuZxPOMjzTp/MJ4DN8DXweJjf
yVoW1JNrVF8SjdO0ldO2zPucxmfdO5T1PlkstznBQxeFc1PRJuLjJcOMk04vlXTWza4bO3i8
3LHrPuK3F8Ng7Z1b/R6zDB6sT0rjPt9Lb/ZMVKMKy91bT2hLfU99FkkvMzi9ehWwuIqYfEUp
0a9KbhUp1IuMoSTs00900+x6PHy4ck3jVLNLYANAAAAAAAAAAAEqc50qkalOcoTi1KMouzTX
DTN2yXr+vCpToZtCNSm3Z4iCtKPO7ilZ9uLbLuzRwB3PB43C5hh418JXhWpP9qDvZ2Ts/R7r
Z7noOGYPHYrL8Qq+Erzo1V+1B2urp2fqtls9jf8AJevqGKqU8PmdKOHqSdlWg/u+/N949lff
12QG6JXaSRk//LVlZfDgxmHnTq+HUhJTpySkpQd00+GmZGUrRk9tuLnnefdyYk+9pVqspe82
3faxRzUNm1f4kL3p3fOq5R2nbb6/67HjN5dpycmrOyaLcpSUNKjd2334ZKdpJuSuu6E61WcN
KX3fCe3BOh20AG6oAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAABrnVXQvTvWWHcM4y+FSuoaaeKp+StT2la01u0nJvS7xvu0zYwTMrjd
wfMPW/sLznp+FTHZFOecYFTS8CFNvE005O3lSamktN5Rs7tvSkmzkx97mo9W+zTpjrPVVzHA
+FjXb/bcK1Trfs8uzU9oqPmTsr2sd3F5tnXIrcf0+Ngb91j7Iep+kfFxP2f9I5ZC8vteETlo
itTvUh70LRjdveKulqZoJ6OOeOc3jVAAFgBVJvhCUXGOpqyK3LHH7RQHQukvZbV6m6Z/TVXN
Vg4SquFKmsP4mtJ2bvqVt77WN1wfsq6YwjqeLSxONUrW8eu1ot6aNPPxvwTLv4yy5scenCDJ
4Hp3OczjSngsqxlalVlphVjRl4bd7e/ayV+W3ZH0LgensmyydCeCyrB0alFaYVo0Y60rW9+1
27d29zJXSvui8xY3yf1HDcF7KepMVTcqyweEkpW0V61216+RSVvrfY2bB+x7AU1U+3Zria97
aPApxpW9b31X7eh0y3rsUhulq2foRdRS82d6ajDpvK+nvCoZXCtFuC8Rzrylrdl5nG+m7tyk
j3WhoWubc+bRd0TxE/Exbk9N/wB3wLEnGFRKK1L+s+TwfNz3yV3cEtw3SU3UkoRVvgXGvdUH
pklZ7XI2k2t/L3+BGo1C2nzLu+LHDNt5E4z0OXhPTfa/P7yzaFnG1iSkrrUtmR0pyVP9m+r5
f6sWiXdQAbqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAABz3rf2QdO9XwqYihShleazmpPGYeldT8zctdNNKTep+baV7btKz6E
C2GeWF3jTT4ezvJlk2f4/KvH8Z4TFVcP4unTr0Scb2u7XtflmPahF2slu+Vc2TrZS/X3qO/f
M8T/APbIwD814uO8fibZcvLl+We1eYRsr2fHFy3iE5SjFXblwl+4upJRknuuzPf03l0876qy
vLqau6lZJ/Jbvs+yHFh7Xuq26j6IyXBxyvobI8DocKkKWtxd73k7u6e/fg9Fmo/NHpzGUViJ
U4e5SioQXyVjzJpSSb5juezwz1wkebld2ordJFJJN8lZPTa3dlNnJJ7X9DVA227bFVJa137I
g73uuFySvCnh62Ilv4MJSXx2M+XrFfjn8mtV4VauKqpRVtXF12I1PHT3V1e1ro1KnjKmIxFf
Et7yk0vgj1fbK1O0tV1biyPnPImWWdu3qcdkx7Z51WvLa0vQQnB3dRapdlxYwP6Qqpp9+3H8
i5TzKad5fg0jGSxf2jOwnBPUrK29mykqt4pvSn6xMOszVr6fy/zJrMIylC90v3jdTuPo0AG6
oAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAPjv2iYTEZf151BDEUtFV5hVq21J3hUk6kHt6xlF+vruaxtLVO1vLt8ze/bLZe
1XOpWTf3Gz/9CmaHNJS0xd0zeTplfpGTlRcrbxR0L2M5bDFdZvMZJqOEpN03bbW1a3HNrs57
U+7UoLtFbep172IYOdPLs0zKqpqivuqSa2lUa3fG9k13239To4MPrLlv8XR8U28RN3V77XLM
veTXpwyUpXk5Wvd3dyDfmX/Lfc9aTUefapZNb7q/cPaLl37fMpblepVNNtN3XCZZJuk7Pk8W
f1XR6VxcU96i0J+n+rHsiuzl+RhepL16VDDPeKld/HZnN5V1g14u8tNCw+W16eGprxbbJ+6v
5k6mFrQSepyb9ImelRlJ2cXzyRnRblvGzfF1sfN5Z3b05h019Rrxf+7b/wDayDr1Iys6U/pF
mwSoK+0X82i3PD0+XFfgJlU+umFWIuleEo/NWJrER24MpLC05OP3cfwR555XSbUtCvzzx+Y9
p+U6fTQANkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAA+UPbKl/+V85Vm3LwP8A6KZocI2U1J7x7+h1n2v9JZtW66zLOMNQ
eJw9bwrU6EJzqRtShHdJWW69eDk9WM6KqqvTqU6jdpQlG0o/NM6v7WUxlrD2lt0t1GrOepqd
ttz6H6Cy2WSezjAQnFqpiajrzjNbxu9uy7WPnmlQeKxeGwlK7qVakYRTty2kj6mxNFYTA4LA
qWpUKEE3a13Y7PHw3Yw57qaWFJ7p990E7STvZ32fqIptqS9LENOmcdLsvQ9FyKu9pKWyve/I
974WDk9Ub7t33KJJzun8bgSTvOPomYDM5KrmlbT2e5nE9Ck36tmAl58RVqN7uXPc83+oZXHH
p1ePjurUrabWv8kRcE7KyduNi9oVyCVnJp8cHgbekteGrcL8C1KnF09UorT6nod7rttdlLLS
ttl+RFpXl8JNK2yiNEF2PRGnePqS0px5+ZI7wADqUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonUL/wC28Wrv9nbt7qNK
z7ojLM8p1F4WGwVWpF/fww6bvbnazvt6m69R/wDfuI2/q/8ASjFO9rdj6Hhm+LH/AIn/AKeT
yZWcl1+3J+n+isfkntIyeONd6EJKvCr5fMld8KTfOx13ES8WtVnay1OxajdbNWCjtGK7F8eO
Y3pXLkuX1KLWiS9Vt8GQtqvF9lYk3aSSaIJaFa+5dXpWM01x+IfqrccFIq0vhbgrsnfd78BM
W61RU8HVkrOy59GYGl95CMuL3vfm5mcZL7lRitm7tdjEqOiLv7t9jxv6llN6d/i/Nqaed/xK
WSXBVxcaerl8tFVH3v8AiV4njSO2LdtVnaztZojsmlHjuXF5U23x3KOCi+SdRKCva2y+ZSCv
G3e97koxcU+/zEFZpEWRH/LuoAOtQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGl9TUY0861Ju9WnGTv2e8f4Iwl7Tt9DPd
Wq+Z0t//AAV++RgGvdPoPG74sd/p5XN/kolaSSfz+BVy7fgw7Slte9uxS6el8W5sbs1FZOMr
3Tb/ACKe67OzZThJd/T0KyTjZPm5IPm6ts7MNNSu9t+CllJJLbe8viTbc+9muxXLaYxOeVXR
wuqL25sbNS6Wo4jJ8HVVXRUqU4zktLfO/qad1LUU8PPR/wAKS+qOsU6caWBw8IK0YU4pL02P
B87P25NPT8fHWDTcf01TwWElXr42nTpvyqVRaYuXZXv3MZ+hcTNKVGrQmuPLJv8Ager2zVau
H9mterRq1Kc44ik04Saa83wOG4TqvPaNKMoZrjErbp157v8AE4PW1v1PrsjyTG2s6FWXyg3/
AAPLVwWMowU6tCcYLluDSX5GD6DxfVPVOTZji8Pi8XWr4asoaVinGKW9vel8+5s/2vq/C05e
LkEqkE+JY+k9/nuVyxyiZr8Vjne+yuRt+09muF6l+fU+PU7V+mNco7T/ANvitL78LcrDqbLq
lRQxGVeE7rXH7S24r4bK+25GrU/93bAAdTMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGm9WP8A7VpKz/3K/wCqRgotu6Zn
uq/+96X/AKC/6pGBa8y3PoPF/wAOLy+b/JRO26RRJRVtrc39SV9kuGQ3UIq3zZuzJpXT7si9
rfMlsqbfL7FE7Pd78r4EzaFOIJx5fLKXSUpLayvcNpNLt8OSFd6MO7fiymeWsbtfCbrAZxGV
XD7Jt64p2Xa6OrU80wNfC0JUsVRcZJNLWr/Vcr5M5o467JpNPm6LkZzppxjNx0q6sz5rny3y
W16nF1i2L2j5RPqnomvluCrUlUdWNRynLZKO/ZM4BT6QzvDU4wr4LRzpfiwd/wAGdmo5tjoU
1GGIsl6xT/gX/wBY8yglad7v0jt+RnjYva0X2XdUVOhsDmeDx+Ec6eJrKpCfiJJNJpppJv8A
hszd6HtJ6fq4+pialbwas6ShJ6akuHx7h6qPVGI8RKtScoX3s1t8eC1jcVkeaR0Y3D4mUdWu
zhBrVbne/qxlqpxy1+Nvfg+osijmM4wxmGTqftxxEZJ9/X5nswtLpzEYqrWrU8mructUZSjT
lJv4t97moz6e6VxEtVOpjcPKXGiVKCj+WxWXQuHr0ZTy/Ns1py0PQ/tEbKXZ2SV1uu5X11N7
Wlm/js4ANmYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAANN6tv8ApSk07WoL/qkYGXvbc+vobR1ik1gk+PP/APyaund/Nux7
3iXfDi83nn+pUoWk1K94p7kZe8rPh+hWS/Z7IoqlJXTmrx53R0bkZa2q1qTu+9yDi9N+6Hiq
3MbP1IurFp2fu8iZJ9RpWjZ7vd/A8+NlKNGK/rNt3PQ3FSSju2Yfq/GRy3KIV1/vJPS/h+TM
ua7w0vhNVKn5loT35JOKuk3ZmqYbqOpGkpauI3tb/I9+H6gU9LqzvF9o2/yPA5OPeW3fhlNM
vOc8MvtFNObi09CXJuWFwWTY/B06kJ0sLUe8oePdr8f5GhxzfCTtGTe3y/meiGZ4aKgqVWcX
vqepLb8TK8dnxpMo3iHTeW1JaadfU+bRnF/wMXPC5NTx1fCy8aVbDpOpDyO1+LoxviYuMI1K
OKrwuk01UadjE5pkmHzbFyzDGUXVxFlF1HUd3ZJK9n6Irqr43GfY2avl2USn5MXoj3i6Lf5p
ItrLcpi044yz9fCnt+ZpNTpbL5JpUdMrf1pP+Ji8T0hSqy+6caaXdyaf53Jls+luH6/8/wDx
9NgA0UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAABqPXFaNF4BzdovxLv/4mqLGUrrVJRaV1vybN19XwtL9H08Unon4m6ttb
T6/M0BqNShVnGeqMINxd7tM9Tx+S48UkY5cUyu6yVbMowpTere22/wDmXcroyx9WFPVHVV31
N9jVVOpicIk56Wu/J6sDmNXCKKnu6TXhz27fCxXPmuWX8k48M/DL4ytLC4udGotKg7N+jR5q
uOlTg6kN4vv/AKR4M1z55hpdT373vbv+B5MNjl9ilHZRhU5uP7m5/GtJwT8xl6ebxlGD7/6+
Br3tCxcsRLLqK9yMVO/1f8i5WxEZtyjLnvfc8uPUMZQSxF52Voy5a+rMcuXKdWovDPw1qNS0
VFfiTp1pR2Upbej4I4+g8uhSrKadKbsru7R54VoJu/JluKXGx7liqseJv53L1HMKtKN/Ecm3
vd3t+JjYVI8cK+xVVI302u/W5MsQzf6drJK0t13sv5Hqw/UmIpVIWrpK++0b/mjWk4/Uo2lO
/cnY32PVlGUPvFGUkrXsv5kaee0JXjFKb57N/vNFcmmrPZko1JeGpfkVvf0nT//Z
--------------050208070109070600060709--
|
|||
| From: | Pedro Cervantes <pedrocp@u ......> | Received: | May 30, 2003 |
| To | artoolkit@h .................. | ||
| Subject: | Wrong video display ! | ||
This is a multi-part message in MIME format.
--------------000004090104020803030004
Content-Type:
Content-Transfer-Encoding: 8bit
Hi, I'm trying to use a USB Logitech Quickcam Pro 4000 under Linux with
modules pwc & pwcx.
When I use "camstream" I get a 640x480 x15 fps video. But in ARToolKit I get a
colored square over the video. The problem is at the rendering to the window
stage because I can have 3D objects even when the patts are behind that
square. I captured a frame from "simpleTest2" but the same happens on every
ART application (see attached file). Any ideas on how to correct this?
I'm using the Uwe Wössner's ARToolkit 2.61 modification on RedHat 9.0
Here's my vconf inside all my applications:
*vconf = "-dev=/dev/video0 -channel=0 -debug -width=640 -height=480";
... And here's the debug info:
=== debug info ===
vd.name = Logitech QuickCam Pro 4000
vd.type = 1
vd.channels = 1
vd.audios = 1
vd.maxwidth = 640
vd.maxheight = 480
vd.minwidth = 160
vd.minheight = 120
==== capture device channel info ===
channel = 0
name = Webcam
tuners = 0 flag = 0x00000000
vc[0].type = 0x00000002 CAMERA
=== debug info ===
vp.brightness= 32256
vp.hue = 65535
vp.colour = 32768
vp.contrast = 31744
vp.whiteness = 30720
vp.depth = 24
vp.palette = 15
error: RGB Palette not supported, trying YUV420P
=== debug info ===
vp.brightness= 32256
vp.hue = 65535
vp.colour = 32768
vp.contrast = 31744
vp.whiteness = 30720
vp.depth = 24
vp.palette = 15
===== Image Buffer Info =====
size = 921600[bytes]
frames = 2
Image size (x,y) = (640,480)
Usually I would prefer to correct this myself but I have a really close
deadline for an arts show. So any help would be apreciated.
Thanks in advance
Pedro Cervantes
--------------000004090104020803030004
Content-Type: image/jpeg;
name="captured.jpg"
Content-Transfer-Encoding: base64
Content-Disposition: inline;
filename="captured.jpg"
/9j/4AAQSkZJRgABAQEASABIAAD//gAXQ3JlYXRlZCB3aXRoIFRoZSBHSU1Q/9sAQwAIBgYH
BgUIBwcHCQkICgwUDQwLCwwZEhMPFB0aHx4dGhwcICQuJyAiLCMcHCg3KSwwMTQ0NB8nOT04
MjwuMzQy/9sAQwEJCQkMCwwYDQ0YMiEcITIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIy
MjIyMjIyMjIyMjIyMjIyMjIyMjIy/8AAEQgB4AKAAwEiAAIRAQMRAf/EABwAAQABBQEBAAAA
AAAAAAAAAAACAQMFBgcECP/EAEkQAAIBAgUCAwUEBgcFCAMBAAABAgMRBAUSITEGQRMiUQcy
YXGBFCORoRUWQrHB0QhSVpXS4fAkM2JysiU1Q1NzgpKzF6LC8f/EABoBAQADAQEBAAAAAAAA
AAAAAAABAgMEBQb/xAAqEQEBAAICAwACAQMDBQAAAAAAAQIRAyEEEjFBUSIFEzMjMnFhgaGx
4f/aAAwDAQACEQMRAD8A7+AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1/wDU
To/+ymR/3dR/wj9ROj/7KZH/AHdR/wAJsAA1/wDUTo/+ymR/3dR/wj9ROj/7KZH/AHdR/wAJ
sAA1/wDUTo/+ymR/3dR/wj9ROj/7KZH/AHdR/wAJsAA1/wDUTo/+ymR/3dR/wj9ROj/7KZH/
AHdR/wAJsAA1/wDUTo/+ymR/3dR/wj9ROj/7KZH/AHdR/wAJsAA1/wDUTo/+ymR/3dR/wmYw
OAweWYOng8BhKGEwtO+ijQpqnCN227RWyu239T0AAAAAAAAAAAAAAAAAAAAAAAAADRuoEpZ5
i732UHft7sTFyUpPbl7mQzWUq2bYlzd/vJRe3ZbL8keG7cmns7Wjbsl6nBld5VvPiE4ScduV
yUV3GUpyu33sSaelb2uVmnJOUdlx8ivadrc3aTi+dJB3ilJ7rj5Fzid4O6XDItxqK699ytb+
I2LUoanCN7NuyKylao1bZeiLlmlu+CMt5t2+ZOjaCjGKi1JSvzZ3sRqvVKyTXzReUEoJxSX0
La5u92JRbdlpja7tzbgtJXV7dz0JbtuxafvNLj0J2It2kmvwINapOTlva3HBcte5HZWu+/oP
ptYgpNvazI1G2lG+zLs52Udt9RbTtK7Wy7jWh2cAHe5wAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaDmElHM8Xq2++nb8We
FyTqO1lty+T15ir5pinO6+/nb/5M80oRbsrX+Jw2d1tLaomtlvconZ8782Kxd7ycWmtt1yQl
Ja9KW/r8CvxKkpKMNTe7dkNNlvGz55Lc03Ky81n33sTW272ky29iCamrrduQnCc3GK5bui4l
ZfK9vqR80pbP3Pe+CI1BCTtK8na3OxBtJK7tdk21KTV/yLbjfRvZcjQlKWlJPlO1y0oqMm23
u72LsrPvfcgvNduyUdtx6h7z2tYs6fiy9fRaXZlrduy23JNLUWlUep+VK9ylKL1XW6RchHS1
JPh8EW9FOWy1Pv6EjsQAO1gAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADQM0t+lMQ3fatL97PLdRfr8SObV3DNcYuyrz/6m
eJ156FK+z4OHL6229rldWuub7EbwjHVJWkYjM83wuT5e8TjMRClJt6Iykk5bX7s8VHO5Zn0v
DN6alBVKqjFS2ulK3r/EjVNxsUHCGqU3vJ+WxVvUt+V+Rr2Y5hXp1sqUWl4tV6o7+np+BkZ1
6katSCezfL7E6qNvU7Tajyr3ZVy0vkx0a04TbcmrruyE8RJyak1xt6iYpZGVoxUnt6sg03WU
uy4Z4ITq1asaSlu+NjXq3VFOp1XRyfCedKpat20r6rf6Mn1PZuTeuppS35Lcn4kUovbv8DHZ
bGp+lcbPxNoS0RVu3+kZNJR8rVm/qPiN7Rabju+eF6Efdte6b4ZK3lsveT5KTW8b7pBZFx02
vvchPd9i7zF77W+v0LKd36W9SJCuxAA7mAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAON4//asT1NXzH7vBrFVqEVzvGbs/
Lvvbg8mT42WH6Qp4vM56VQbUHa+qHZeVbdi/1RqxWaYj9Iz8HLsJjatR7atdpSt7u6NExFTE
+0TOHSpx8HIsNLTGN1LXbtfyyWxzWdrbVw9F+0DqWrVxCqrJ6Eb04eNeMnf0a22fovmbfmdG
hgsho5fhYQpUFUjoiko8NdlsZLDYahgMJQwuHjopUoqMVdvbtyYzqOooPBUrK8pRmnb47lbd
pW8xT+35BF2c/FlqXpsZbETUK9SWpKOqyb4uYzGR19RZLFPdym//ANWYrr/N50MfQy7AzVKr
Rl4k23pU779nvz6CYpZTGZ1l+HbhOvFySbdpx2/M8eH6iwGJxGiDcptbLyvb154OfYmlUxeM
1KtVdSq94qTa35svTn8yWGjPC4ipgsvrRxGK8N66ylrjTTvdKS3TsaTGaV9q2fqrq+FJxweT
0o4mpZ+JLTrS+F4y/I9/SWRUcoyiniZxhPFzinVqQlJpPfez/kaZOhQo4dUMPGqq3M60ktbf
/Mt7G3dCY6tiMPisvra52inCpVu7NX2uxo7bHkS11cdUlvLxf5mUqN3c5bW4+BjMgV4YyVua
ruZJtzVuYszyna8+KpftPuyNm2vTdoubKFm9/kW2pOOzV1stuCuk7RSsry4LTg5Q0arN7pkp
xk427dysFx6rYn4fXXwAdjEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHzFjcxxvtMzPE1pR8DLqblVUbqV23dR4jLh8/An
hsDneApqhQh4dBPyq8JfLnc6DFwo4eGHpwsobcluo9SVzm9ltNJwVLPlnWEq1XahCp5/c80f
3o2bPtLzzL6dvLUUmvge3lJ23WxiM1jqz3BQtf7rV+aIvf1OlzEp0uqcl3Tsqn7n/MxXXmT1
MfSw+aYSMFi6bfiOaehx+Nlfj4mSrzliessvwsYNyowk7XXGn/Js13rDP3j8bHpvJ/EnUcvv
atOq6bXdqzSvtfuJ18S1zC1K+bVv0fk9PTLTprYxwvofLUZRvZfM9tPpvMMu1xwcE56HrqtS
1Tb53S3RumT5Lgsgy6NHD006kt51HFam/mkj2042i22n3L+yvq5vS6fzitdVHpblu1rul+Bv
eR4CGV4KMYxXi6VeTW7a+h7IwVnK1mSg0vNJpJbFLtOkun244GrJWcpyk2mZCnTjCD37u1/Q
8PTKTyeGpPVKUvM+Oe579rJb/Qpd7WkI+6lpv9SFR6YxhFee+7L0rRhDazvvf0IRhpk5SfN7
OxCVPLuuE1v8fQhGFo2XPLJK8nbvfkjUk4TtF/S3clLroAO1gAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADjKzKilZS/J/y
I/pGlvd88bP+Rm/slFKKavvvzsU+y0ptLRZrh3f4HJ7L6YNY+js27P5P+RYjF5hn9LE0d6cK
ehv43Xr8jYpYenZRcb2laxKlShRlOKVpSW3yHSdNZVWWX9VYuvUpvTUorQ1Jeji/XtJmMyXK
8Hk1avWoy1TrVXUbs1a/zbN4nRjOK1K9tkyCw9GnFXjf43ZO4aa/UxcXqb4fHwLUcS3fRCck
v6sTZXhqcU/Lz2uR+zUtKTS8vZkbRWv+NVcdXgz0rnyO558ROrUwdSlGhUtUeltwd0mbT4VJ
Rk9ENKV35Tz+EprVGnDQnf3R7J0s5Vh3g8tp0X6u1+T0Qulfb5Mu1FFNNXS+PCI1PLKzVvoV
t3UxRxlOqtasvityNR+ZJO6uXJyvPU27/AstuMbu23f4hMUTak432ZbSbcYd+5NXbXq92Vaa
krNcdxodbAB2sQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAc8lFQ8zd2USck5N3j2jYrKDUlN7tNIo14cvLvc4NtEXFWi27
Rvf5FKkL1IzS4Kp6pRtsne/w+JSN3Uu1yrfInYg1K1uHcpJuLs1wTcHdJbpPf4oqo65TcnaV
7snadLKe8pPYhKzkov6r19C7UUZSilsUleLjfZrsNCxUTmnFe9ay+HqRotxUqba0pJ3L1FPV
OXdSKS86qSfMVwSlCreTjZ2hbe/8BLztylyFZwcXxb8CF22lfZ/ighVNXkmk32t2LUldOE2k
r32LknpqQta1rP8AmW5xcqmz25IuyUlJRn5Wtl2Ld5tp7b/l8yena8VuvVCLTaa47iJdbAB2
sQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAc+nHyaHuncjOUVRT/abtb0Kxlu0ndL8iEY3k5p+Xs7cnFNtBaraJK0b3+pST
tNSg94riwcm0k9t+ST2g7P3rCXabVpRh4STleepytbgjGdtM/VE7KT33f7iis09r2bTXoTP+
pISUZvU3Z/wKTm4uLiuVbkS06W0W6d9UvQjUQK0FL4u6+Ba1Nyd9i7J2d+bkG26ija0rXa9A
bJc6UuNiyn949NtkXLOrNq9rcfMNfdamrW+tyYsg4qW7I2Stu+SUm1BtOxDXe2y3dtxoItxW
75YtGNlG2/Yg9XmTstMiqbcItLzb8rgaQ62ADsZAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA580lJNJbstyi0oxS9S6kpN
xV1vbctykqdR7Xs+b8nE0i3BXtfn1KtJakuZPT8icpeFJPlItwvepVi9ptX+ZAKkqCqR/rvk
rKXktxbuIq732sQd46pRjtw9/wAyye1J+aF1yktxfXGaa8ytt8PUhK7qKovTgpUcnBNR377g
u1HFOMV3vcbxaem7t6k3C0VctuppW0eXtuEbR7tt7lJzXheZ8SutiqleMru0uxTw5xvGb1Pl
O1rBK3NSdHTJWle7XoUUfOt+HcuSc3Jv/wAyVk/gu5GpOMFqirt8kbNoSu5yb9blIuyY0ycm
2r+hWUXoblvKW7XxJiY60ADsYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0GVPaLXKe7LDvKa+B6b2hJc/Eg4q9rbnVzeB
L3h04+Ly9f7nnlFug1e9yu2j1J1Kbc029ub24IpXT1L7trdnm58eeF1Y7cc8cpuISfkS9Bf/
AIeV6+ovN002tk7FJSU7K22nYz0vtVJWdt36Fpzaj8yrnaWq2y2t8fUhKT0Tvu2n+YmNTsnU
1pPhkJq7T9NyULRoxgnukE3bfh7CYzYaYzin6bkZS1Xa232+BXUvD032uW5Jt2TsibpGoba1
Nq7XcjUpuo3vaCfJJ2Sio+6iEko1Wu8NiJpO0lJONobpbJkNN6d/V/xJ38qfxIxi5X82zbdr
BHTrAAOxmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAA0nrj2oZB0PSdKvU+25m7qOBw84ucXp1J1N/u4u8d2m/NdJ2dvnTrj2
oZ/1xVdKvU+xZYrqOBw85KElq1J1N/vJK0d2kvLdJXd+ji8bPk7+RFy06jjvaNlVLNMJlmVK
OaYqtV01fCqKNOlC13LXZqTt2V+Hdp7PY8DmtHGQWiWisv2Jvd7dvVHB/Z1g/FzbE4txg40K
SirrdSk9mvpGS+p0k9nUcd8fHWm+tptc9yEo66cUrxW+zXBreDz2vSnCOJfiUkmm0vP2tv34
fO+/PrsVGvTxCVSlUU4L+q/ruYZ8GOU1Yxsz41uSlTio6fJ63LTWzS9297nuvrUtrKR5ZUGo
Xj2drLc8rn8K494Ovi8mXrJZ1abd7q3yJSjGCu3d2vYq4Rsm9mWqsXp8u/ocNln1172cuKfv
S2a+BWs1qS4vt8iqehyafmaIao3i5Lh/gVT8VqtOKs72/eQldq3oicYrU0+ZK6KalFcbruNd
ii2jeXK4RGOmLfq3dslbZzb93tYiuNKXLvcjf4Toe7b+Fi0lKm7RfzZOKs2797EXdcu/oEad
ZAB2MwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAeDOM7yvp/L54/N8dQweGjda6sranZvTFcylZO0Vdu2yOF9ce3/EVarwXRsfBpK6
nj8RRTnJqWzpwd0otLmau9XEWrvXj4c+S/xiLdOwdVdddO9G4dzzjMIU67hqp4Wn561TaVrQ
W6TcWtTtG+zaOAdce3DPOoarwuQzr5Nlyum6dRePW811JzSvDZLyxfeScpJ7cyxuOxmZYueL
x+Kr4rE1La61eo5zlZJK8nu9kl9DznpcXiYYd3uqXLYAXsJhp4zGUMLTcVOtUjTi5cJt2V/x
OtDqXRGD+ydM0JOM4zxE5VpKaty7K23Dik/qbGW6FCnhsPSoUY6aVKKhCN72SSSRcCAuUMRV
w1RVKM3CXF16FsAs39bJgs+pVYxhiV4VS/vL3f8AIy8Nr2XxdzRD2YHM8RgnaL103s4Sey37
ehFxlc2fB+cW2zpqqlpst7lmcJxlGnBala7drljAZjSxlKNmo1Wlqp3vpfztuvj8uD3U5eW/
5nHz+HhnFcObPj6ry1Z2qaUnZJJXIXV7Pg9Fah4kozg0pJ8Pg8k1KOtyvzb4Hkc3jZ8d7d3H
zY5SKR2m99m9iUYOVRwav6orGK0qV1db2IOo021dSfc5m+1uUlWqw0PyJ7fMq42c48XZKEVD
S7JLfsQ17/JtC2piKlpWlMJapWW+12/QpJWep+t1YNeFPVy3u0iB1oAHYyAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAxHVPUGH6W6YzDO8
VHVTwlJzULteJNu0IXSdtUnFXtte72JktuoMnXr0cLh6uIxFWFGhSg51KlSSjGEUrttvZJLu
cb609v2ByvEV8B0zhIZhiKU3CWMrP/Z7pr3FF3qL3le8VdJrUmcX6w6+z/rfF+LmuK04eOl0
8FQco0INJrUoNu8t5eZtve17WS1g9Li8KTvPtS5fplM+6hzbqfM5ZlnONni8U4KGuSUVGK4U
YpJRXLskt23y2YsA7pJJqKgAJA2foXL/ALZ1DGvON6WFi6jvDVFy4ir9nvdf8prB032e4LwM
kq4qVPTPEVXaV76oR2W3bfX/AKsBtwACAAAAAAi3GSlFtSTumuxmMFnk4KFLErVBbeIuV8/X
t/mYcBXLCZTtumHr060ddKpGcdt0y44wmkpRVu5pmHxNbDT1UakoN8+j+a7mcwedQraYVkqU
r7tvyv69imWEy+ubLiyw7xZCWGk/PTbst7fwPI5JfeTVtrKJkoS8rV9Pw4LcqVKpOCaW2+9r
fU83n8GXdw+tuLybJJk8Tc5WTvHZ2+ZC2m6e7L9SM4uUpWaVrNFhq1ZWknFfW/zPLz4s8LrJ
24Z45zcqjbsrq6uE/Eu3ZWdkyWzvJPa5bs0tnw729Si+3WwAdTIAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADh/9IjqeNDLMv6YoVJqviZrF
4jTOUV4UbxhGStaSlK752dNbbpncD439p3UP6y+0LNsbCr4mGp1fs2Gca3iw8On5VKD40yac
7Lbzvnl9fh8ftybv4VyvTUAAeuoAAAAAB3HLsFDLstw2Dhpao01C8Y6dT7u3xd39TlfR+AeP
6lwqtLRQfjzcWlbTxz/xaV9TrwAABAAAAAAAAAAAPdg81r4VqMm6tK1tEnx8mZ3CY2hilqpy
d1u4PlfQ1QRbjJNNpp3TXYWMs+KZNznaUYrs3Y8ckniZ07KOpXjZWXy+Zj8LnUnaOKV12nGN
mvmv5Hsr1Y18DHE0JXldSi7NOz+HP0MOXjxyxvsxxmXHSa0xaVlZ7kN2k4vb4inepT1Nu+m7
v6laf+6u2ltw+UfO8uplZHp4XcdbABuqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAANc69z6XTHQucZvSlONejh3GhOEYycas2oQlaWzSlKLd
77J7Pg+Kz6A/pHZ9FYfJ+nacoOcpvHVouMtUUk4U7PizvVut35Vx3+fz1vCw9eP2/bPK9gAO
xAAAAAA3/wBnGASp4zMZKLbaoQd3dWtKW3G94/g/rvhiumsFPL+ncDh6mrWqeuSlHS4uT1NN
fC9voZUIAAAAAAAAAAAAAAAAD15frU56Xtb3X3PIZPLad6bbSVndPu/9WMfIy9eO0vfT3qDU
XUd1q2UF2+hDTNrdxSfpz9SblLXu/e3ISqKNRQ/aR85ld2ujHqOugA3VAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAANR9p3UP6tez3NsbCr4eJ
qUvs2Gca3hT8Sp5VKD51RTc7LfyPjlWxxuWUxn5HzD7R+p49XddZlmlCpOWD1qjhdU5NeFBa
U4ppOKk056bbOb73ZqgB72OMxkkZAALAAABkMkwX6RzvBYV0/EhUqx1x1WvBby3+SZjzdPZ1
goVcyxeMlpboU4winG9nJvdPttFr/wBwHRwAEAAAAAAAAAAAAAAAABl8MlDDqK1J2XPr3/eY
qnHXUhG9tTSv6GaScqdoxtJP1OD+oZ649E+xVyd079iG/iKXM2SaUdnyRi9KfaS/eeHjt1Ox
AA6WYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB
wD+kdn0niMn6dpymoRg8dWi4x0ybbhTs+bq1W62XmXPbv58V9e59HqfrrOM3pShKhWxDjQnC
MoqVKCUIStLdNxjFu/dvZcHZ4WHtye36VyvTXAAesoAAAAAB1rovAPA9NUHNSU8Q3Xkm0+bK
NresVF/U5XhMNPGYyhhabip1qkacXLhNuyv+J3GhQp4bD0qFGOmlSioQje9kkkkBcAAQAAAA
AAAAAAAAAAAAv4OGvEJXSsna6vuZWpVV0uGmY7BR03qtWs7J/wCvoZNqlHDxUXaz3532PG/q
Ge8/X9L4TvakkoRm6nv82+Jahqb1Tj52rPclFOUdTXkcnZFbqNtzzm0dhAB0KAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA032pdTx6V6AzHFxq
ThisTB4TCOnOUJKrNNKSkk7OMVKfb3bXTaPjo7Z/SK6h+055lnT9GrenhKTxNdQrXTqT2jGU
FxKMY3Te9qvZPfiZ6/h8frx7/bPK9gAOtAAAAAA92UZlPKM1w+OhTjUdJvySdrppp79tmzq2
UdS5XnNoYavorv8A8Cr5Z9+Fw9lfZu3c42SpznSqRqU5yhOLUoyi7NNcNMDvIOZZP17jsHoo
5hH7XQVlr4qRWy54lsnzu2+ToOX5pgc1o+LgsTCtFe8ls49t091w+Qh7AAAAAAAAAAAAAAAA
ZPAxj9ltL9p339f9WPS1KraKdle7LdGNqUI3tFPd25JLi/CvsfO+VnMua1tx/wC1cUox8kdr
L8y1Tbc/vXf0+BTUlJOX4epVvW1UlZStZfFHPLI027GADoZgAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABpPtbzeeTezHOqtKGupiKSwivTlOKVVq
Em3H3fK5WbstWlbtpO2GPtlMZ+R8s9YZ9Lqfq/Nc5lKbhisRKVLxIxjKNJeWnFqO11BRXfjl
8mEAPfkkmoyAASAAAAAAAABewuKr4LFU8Thqkqdam7xnHt/r0LIA33J/aD7lHNqPovtFJfJX
lH8W2vojeqFejiaMa1CrCrSlxOnJST7co4Qe7LM2xuUYqNfB1pQd05Qbeidu0l35f47AdtBq
OT9e4HGaKOYR+yVnZa+acnsueY7352SXJtwQAAAAAAAAFYRlKaUV5u1yhfwcNda/Cir3sU5M
vXC0rIqN6e627BO1JJ88IpeSScna75CtUnqbtQivNLu32SfB81nlLltvjjqaUcZN2g1Z778F
dvDXr3T7Ek1JpU2mlzct31ampJX533KdVfTs4AOlmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADmXVvsP6Y6i1V8uh+hMa7efC006MvdW9LZLZP
3XHeTbufPHVXQvUXRuIcM4y+dOg56aeKp+ejU3la01sm1FvS7Stu0j7ULdehRxWHq4fEUoVq
FWDhUp1IqUZxas009mmux1cXl54dXuK3Hb4MB9L9b+wbKc3hUxnTDhlmYSmpOhOT+zTvJuWy
TcHvtp8qUUtKvdfP/UHS2edLYtYXO8tr4OpL3HNJwqWSb0zV4ytqV7N2vZ7npcXPhyfL2rZp
iAAbIAAAAAAAAAAAMzkvU2Y5LUgqVWVXCp+bDzd4tb3t/V5b2783MMAOuZP1dleb6KfifZ8T
Ky8Gq7Xe20Xw93Zd36GfOCG0ZL1vmOX1IU8bOWLwt/Nr3qRW97S78978W2A6mDG5VnmXZzTU
sHiIymleVKW048XuvqldXXxMkEAAAHtwMqcITlN79l8e38TxHtw8Fop6nG74Uu/y/E5vMymP
FT8r6Um4p20Lf/8A0rUaVFx2jByuktil6qm04KNN7RUk9S+ZHS9SjJ3SffdfQ+e6rpnxOC0U
0092t0QVlLy9/Xgq3KMmttL7vlC6VJLZad79wl2kAHQzAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA8+NwODzLCTwmPwtDFYapbXRr01OErN
NXi9nuk/oegAcE6x/o9f73GdJYz1l+j8XL/mdqdT/wCMUp/FuZxPOMjzTp/MJ4DN8DXweJjf
yVoW1JNrVF8SjdO0ldO2zPucxmfdO5T1PlkstznBQxeFc1PRJuLjJcOMk04vlXTWza4bO3i8
3LHrPuK3F8Ng7Z1b/R6zDB6sT0rjPt9Lb/ZMVKMKy91bT2hLfU99FkkvMzi9ehWwuIqYfEUp
0a9KbhUp1IuMoSTs00900+x6PHy4ck3jVLNLYANAAAAAAAAAAAEqc50qkalOcoTi1KMouzTX
DTN2yXr+vCpToZtCNSm3Z4iCtKPO7ilZ9uLbLuzRwB3PB43C5hh418JXhWpP9qDvZ2Ts/R7r
Z7noOGYPHYrL8Qq+Erzo1V+1B2urp2fqtls9jf8AJevqGKqU8PmdKOHqSdlWg/u+/N949lff
12QG6JXaSRk//LVlZfDgxmHnTq+HUhJTpySkpQd00+GmZGUrRk9tuLnnefdyYk+9pVqspe82
3faxRzUNm1f4kL3p3fOq5R2nbb6/67HjN5dpycmrOyaLcpSUNKjd2334ZKdpJuSuu6E61WcN
KX3fCe3BOh20AG6oAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAABrnVXQvTvWWHcM4y+FSuoaaeKp+StT2la01u0nJvS7xvu0zYwTMrjd
wfMPW/sLznp+FTHZFOecYFTS8CFNvE005O3lSamktN5Rs7tvSkmzkx97mo9W+zTpjrPVVzHA
+FjXb/bcK1Trfs8uzU9oqPmTsr2sd3F5tnXIrcf0+Ngb91j7Iep+kfFxP2f9I5ZC8vteETlo
itTvUh70LRjdveKulqZoJ6OOeOc3jVAAFgBVJvhCUXGOpqyK3LHH7RQHQukvZbV6m6Z/TVXN
Vg4SquFKmsP4mtJ2bvqVt77WN1wfsq6YwjqeLSxONUrW8eu1ot6aNPPxvwTLv4yy5scenCDJ
4Hp3OczjSngsqxlalVlphVjRl4bd7e/ayV+W3ZH0LgensmyydCeCyrB0alFaYVo0Y60rW9+1
27d29zJXSvui8xY3yf1HDcF7KepMVTcqyweEkpW0V61216+RSVvrfY2bB+x7AU1U+3Zria97
aPApxpW9b31X7eh0y3rsUhulq2foRdRS82d6ajDpvK+nvCoZXCtFuC8Rzrylrdl5nG+m7tyk
j3WhoWubc+bRd0TxE/Exbk9N/wB3wLEnGFRKK1L+s+TwfNz3yV3cEtw3SU3UkoRVvgXGvdUH
pklZ7XI2k2t/L3+BGo1C2nzLu+LHDNt5E4z0OXhPTfa/P7yzaFnG1iSkrrUtmR0pyVP9m+r5
f6sWiXdQAbqAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAABz3rf2QdO9XwqYihShleazmpPGYeldT8zctdNNKTep+baV7btKz6E
C2GeWF3jTT4ezvJlk2f4/KvH8Z4TFVcP4unTr0Scb2u7XtflmPahF2slu+Vc2TrZS/X3qO/f
M8T/APbIwD814uO8fibZcvLl+We1eYRsr2fHFy3iE5SjFXblwl+4upJRknuuzPf03l0876qy
vLqau6lZJ/Jbvs+yHFh7Xuq26j6IyXBxyvobI8DocKkKWtxd73k7u6e/fg9Fmo/NHpzGUViJ
U4e5SioQXyVjzJpSSb5juezwz1wkebld2ordJFJJN8lZPTa3dlNnJJ7X9DVA227bFVJa137I
g73uuFySvCnh62Ilv4MJSXx2M+XrFfjn8mtV4VauKqpRVtXF12I1PHT3V1e1ro1KnjKmIxFf
Et7yk0vgj1fbK1O0tV1biyPnPImWWdu3qcdkx7Z51WvLa0vQQnB3dRapdlxYwP6Qqpp9+3H8
i5TzKad5fg0jGSxf2jOwnBPUrK29mykqt4pvSn6xMOszVr6fy/zJrMIylC90v3jdTuPo0AG6
oAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAPjv2iYTEZf151BDEUtFV5hVq21J3hUk6kHt6xlF+vruaxtLVO1vLt8ze/bLZe
1XOpWTf3Gz/9CmaHNJS0xd0zeTplfpGTlRcrbxR0L2M5bDFdZvMZJqOEpN03bbW1a3HNrs57
U+7UoLtFbep172IYOdPLs0zKqpqivuqSa2lUa3fG9k13239To4MPrLlv8XR8U28RN3V77XLM
veTXpwyUpXk5Wvd3dyDfmX/Lfc9aTUefapZNb7q/cPaLl37fMpblepVNNtN3XCZZJuk7Pk8W
f1XR6VxcU96i0J+n+rHsiuzl+RhepL16VDDPeKld/HZnN5V1g14u8tNCw+W16eGprxbbJ+6v
5k6mFrQSepyb9ImelRlJ2cXzyRnRblvGzfF1sfN5Z3b05h019Rrxf+7b/wDayDr1Iys6U/pF
mwSoK+0X82i3PD0+XFfgJlU+umFWIuleEo/NWJrER24MpLC05OP3cfwR555XSbUtCvzzx+Y9
p+U6fTQANkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAA+UPbKl/+V85Vm3LwP8A6KZocI2U1J7x7+h1n2v9JZtW66zLOMNQ
eJw9bwrU6EJzqRtShHdJWW69eDk9WM6KqqvTqU6jdpQlG0o/NM6v7WUxlrD2lt0t1GrOepqd
ttz6H6Cy2WSezjAQnFqpiajrzjNbxu9uy7WPnmlQeKxeGwlK7qVakYRTty2kj6mxNFYTA4LA
qWpUKEE3a13Y7PHw3Yw57qaWFJ7p990E7STvZ32fqIptqS9LENOmcdLsvQ9FyKu9pKWyve/I
974WDk9Ub7t33KJJzun8bgSTvOPomYDM5KrmlbT2e5nE9Ck36tmAl58RVqN7uXPc83+oZXHH
p1ePjurUrabWv8kRcE7KyduNi9oVyCVnJp8cHgbekteGrcL8C1KnF09UorT6nod7rttdlLLS
ttl+RFpXl8JNK2yiNEF2PRGnePqS0px5+ZI7wADqUAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABonUL/wC28Wrv9nbt7qNK
z7ojLM8p1F4WGwVWpF/fww6bvbnazvt6m69R/wDfuI2/q/8ASjFO9rdj6Hhm+LH/AIn/AKeT
yZWcl1+3J+n+isfkntIyeONd6EJKvCr5fMld8KTfOx13ES8WtVnay1OxajdbNWCjtGK7F8eO
Y3pXLkuX1KLWiS9Vt8GQtqvF9lYk3aSSaIJaFa+5dXpWM01x+IfqrccFIq0vhbgrsnfd78BM
W61RU8HVkrOy59GYGl95CMuL3vfm5mcZL7lRitm7tdjEqOiLv7t9jxv6llN6d/i/Nqaed/xK
WSXBVxcaerl8tFVH3v8AiV4njSO2LdtVnaztZojsmlHjuXF5U23x3KOCi+SdRKCva2y+ZSCv
G3e97koxcU+/zEFZpEWRH/LuoAOtQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGl9TUY0861Ju9WnGTv2e8f4Iwl7Tt9DPd
Wq+Z0t//AAV++RgGvdPoPG74sd/p5XN/kolaSSfz+BVy7fgw7Slte9uxS6el8W5sbs1FZOMr
3Tb/ACKe67OzZThJd/T0KyTjZPm5IPm6ts7MNNSu9t+CllJJLbe8viTbc+9muxXLaYxOeVXR
wuqL25sbNS6Wo4jJ8HVVXRUqU4zktLfO/qad1LUU8PPR/wAKS+qOsU6caWBw8IK0YU4pL02P
B87P25NPT8fHWDTcf01TwWElXr42nTpvyqVRaYuXZXv3MZ+hcTNKVGrQmuPLJv8Ager2zVau
H9mterRq1Kc44ik04Saa83wOG4TqvPaNKMoZrjErbp157v8AE4PW1v1PrsjyTG2s6FWXyg3/
AAPLVwWMowU6tCcYLluDSX5GD6DxfVPVOTZji8Pi8XWr4asoaVinGKW9vel8+5s/2vq/C05e
LkEqkE+JY+k9/nuVyxyiZr8Vjne+yuRt+09muF6l+fU+PU7V+mNco7T/ANvitL78LcrDqbLq
lRQxGVeE7rXH7S24r4bK+25GrU/93bAAdTMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGm9WP8A7VpKz/3K/wCqRgotu6Zn
uq/+96X/AKC/6pGBa8y3PoPF/wAOLy+b/JRO26RRJRVtrc39SV9kuGQ3UIq3zZuzJpXT7si9
rfMlsqbfL7FE7Pd78r4EzaFOIJx5fLKXSUpLayvcNpNLt8OSFd6MO7fiymeWsbtfCbrAZxGV
XD7Jt64p2Xa6OrU80wNfC0JUsVRcZJNLWr/Vcr5M5o467JpNPm6LkZzppxjNx0q6sz5rny3y
W16nF1i2L2j5RPqnomvluCrUlUdWNRynLZKO/ZM4BT6QzvDU4wr4LRzpfiwd/wAGdmo5tjoU
1GGIsl6xT/gX/wBY8yglad7v0jt+RnjYva0X2XdUVOhsDmeDx+Ec6eJrKpCfiJJNJpppJv8A
hszd6HtJ6fq4+pialbwas6ShJ6akuHx7h6qPVGI8RKtScoX3s1t8eC1jcVkeaR0Y3D4mUdWu
zhBrVbne/qxlqpxy1+Nvfg+osijmM4wxmGTqftxxEZJ9/X5nswtLpzEYqrWrU8mructUZSjT
lJv4t97moz6e6VxEtVOpjcPKXGiVKCj+WxWXQuHr0ZTy/Ns1py0PQ/tEbKXZ2SV1uu5X11N7
Wlm/js4ANmYAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAANN6tv8ApSk07WoL/qkYGXvbc+vobR1ik1gk+PP/APyaund/Nux7
3iXfDi83nn+pUoWk1K94p7kZe8rPh+hWS/Z7IoqlJXTmrx53R0bkZa2q1qTu+9yDi9N+6Hiq
3MbP1IurFp2fu8iZJ9RpWjZ7vd/A8+NlKNGK/rNt3PQ3FSSju2Yfq/GRy3KIV1/vJPS/h+TM
ua7w0vhNVKn5loT35JOKuk3ZmqYbqOpGkpauI3tb/I9+H6gU9LqzvF9o2/yPA5OPeW3fhlNM
vOc8MvtFNObi09CXJuWFwWTY/B06kJ0sLUe8oePdr8f5GhxzfCTtGTe3y/meiGZ4aKgqVWcX
vqepLb8TK8dnxpMo3iHTeW1JaadfU+bRnF/wMXPC5NTx1fCy8aVbDpOpDyO1+LoxviYuMI1K
OKrwuk01UadjE5pkmHzbFyzDGUXVxFlF1HUd3ZJK9n6Irqr43GfY2avl2USn5MXoj3i6Lf5p
ItrLcpi044yz9fCnt+ZpNTpbL5JpUdMrf1pP+Ji8T0hSqy+6caaXdyaf53Jls+luH6/8/wDx
9NgA0UAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAABqPXFaNF4BzdovxLv/4mqLGUrrVJRaV1vybN19XwtL9H08Unon4m6ttb
T6/M0BqNShVnGeqMINxd7tM9Tx+S48UkY5cUyu6yVbMowpTere22/wDmXcroyx9WFPVHVV31
N9jVVOpicIk56Wu/J6sDmNXCKKnu6TXhz27fCxXPmuWX8k48M/DL4ytLC4udGotKg7N+jR5q
uOlTg6kN4vv/AKR4M1z55hpdT373vbv+B5MNjl9ilHZRhU5uP7m5/GtJwT8xl6ebxlGD7/6+
Br3tCxcsRLLqK9yMVO/1f8i5WxEZtyjLnvfc8uPUMZQSxF52Voy5a+rMcuXKdWovDPw1qNS0
VFfiTp1pR2Upbej4I4+g8uhSrKadKbsru7R54VoJu/JluKXGx7liqseJv53L1HMKtKN/Ecm3
vd3t+JjYVI8cK+xVVI302u/W5MsQzf6drJK0t13sv5Hqw/UmIpVIWrpK++0b/mjWk4/Uo2lO
/cnY32PVlGUPvFGUkrXsv5kaee0JXjFKb57N/vNFcmmrPZko1JeGpfkVvf0nT//Z
--------------000004090104020803030004--
|
|||