A Multi-Agent Framework for General Purpose Situational Simulations in Construction Management

Amlan Mukherjee

Outline

- Motivation and background
- Overview of proposed system
- Agents and agent frameworks
- The Interface
- Experimentation and Verification
- Work completed and the road ahead
- Deliverables
- Potential contributions
- Limitations of research

Construction Education

Curriculum only teaches theory and students may encounter difficulties in applying the theory to real life problems

-- McCabe et. al., 2000

The current curriculum does not take into account the significance of hands-on experience / interaction with practitioners -- Sawhney et. al., 2001

Construction Education

- Construction domain is multifaceted

 Cost and Schedule control
 Planning for unforeseen events
 Crisis management: 'What if' scenarios

 Fragmented nature of coursework

 insufficient
 - sufficient

Problem Statement - I

How do we bridge the disconnect between learner and learning environment in construction education? **Traditional efforts** beyond classroom environments . . . Simulations

Authentic Learning

What it is not	A mapping of external events to internal symbols - Maturana et. al. 1989
What it may be →	Greater contextualized understanding of the experiential world - Constructivism

Cognitive activity is contextually situated - Brown et.al. 1987 Virtual Gorilla Project (Allison et.al. 1997), Virtual Puget Sound (Windschitl et.al. 2000)

Suggested Solution - I

Disconnect between learner and learning environment in construction education

Traditional efforts beyond classroom environments

Simulations

Situated Cognition Situational Simulations

Simulations

Situational Simulations

Construction Simulations

Construction Management Processes (CMP) Processes that construction managers encounter in decision making: -Activity, Space and Resource Scheduling -Cost Control -Design Reviews and Change Orders

Construction Operations (CO)

Specific construction operations: -Earth Moving -Concrete Pouring -Tunneling

Construction Simulations

Special Purpose -Restricted scope -Problem specific -Simulation models are not reusable General Purpose -Flexible scope -Programmable environment -Allows collaboration and promotes new simulations amongst developers

Claim - I

A general purpose situational simulation environment for the construction management domain is needed . . .

Simulation Paradigms

- Activity Scanning (AS)
 - Use of Activity Cycle Diagrams (ACD)
 - CYCLONE (Halpin, 1973), STROBOSCOPE (Martinez et. al., 1999)
- Process Interaction
 - Use of network models and flow diagrams
 - SLAM-II
- Event Scheduling
 - Use of event graphs
 - SIGMA

Activity Cycle Diagrams

- Set of Activities: each activity associated with
 - A set of conditions
 - A predetermined outcome
- Activities occur in sequence

Problem Statement - II Need for a new paradigm

- Interactive
 - Simulation and participant: a coupled system
- Able to express:
 - Parallel overlapping events
 - Instantaneous/Time consuming actions and events

Suggested: A Multi-Agent approach

Claim

A general purpose situational simulation environment for the construction management domain can be created using a multi-agent framework.

Agent Properties

- Perceptive to the environment
- Capable of logical reasoning
- Capable of autonomous action
 - Information attitudes
 - Pro attitudes
- Acts in a goal oriented fashion
- Dynamically integrates experiences

Agent Environments

- Software environments (Etzioni 1993)
 Static planning in limited information worlds
- Robotic environments (Brooks 1991)
 Low level motor control and perception
- Test-bed environments (Hanks et.al. 1993)
 - Pre-structured worlds
- Synthetic environments (Tambe 1995)

Multi-Agent Frameworks in Synthetic Environments

- Agents replace humans to:
 - Populate virtual worlds
 - To simulate virtual worlds
- In traffic simulators (Cremer et.al. 1994)
 - Simulating traffic situations
- In situational simulations for the Air-Combat domain (Tambe 1995)

- The SOAR framework (Laird et.al. 1987)

SOAR Framework (Laird et.al. 1987)

- Time is a sequence of states
- Actions and events are instantaneous
- Pre-determined state space
- Parallel, time consuming events
- SOAR is an FSM language
 - FSM languages are restrictive (Tambe et.al. 1995)

FSM: Finite State Machine

Air Combat Domain: SOAR

- Pilot agents participating in battlefield simulations (Tambe et.al. 1995)
- Using ModSAF (Calder et.al. 1993)
- Use of DIS technology (Distributed Interactive Simulations)
- Built on SOAR: States represent situations

Distributed Interactive Simulation Environment

Without DIS . . .

- Interval representation of time (Allen et.al. 1994)
- Represent events as intervals triggered by actions
- Each Activity is represented by a FSM
- Parallel activities are parallel FSMs
- Allows multiple events

The Interface

Experimentation & Verification

- Expose expert and novice CM to a prototype of the system
- Elicit opinion from experts
- Verification based on expert opinion
- Type Zero error checks (Shi 2001)

Work Completed

- Development of conceptual frameworks
 - Process, Product and Information Model
 - Mathematical Model (Rojas and Mukherjee, 2003)
 - Problem formulation as a CSP
- Development of a formalism
 - Based on Interval Temporal logic (Allen et.al.1994)
 - Representation of resource and precedence constraints
 - Representation of events and situations

Work Completed

• Implementation of:

- Dynamic project re-scheduling using precedence constraint and space and material availability constraints
- Agent reasoning mechanism capable of inferring recent user interactions and predicting future states of simulation environment
- Initial development of Agent Framework
- Initial interaction with expert / novice CM

The Road Ahead

- Complete development of Agent-Entity framework
- Implement a prototype of the proposed general purpose multi-agent framework
- Develop a specific situational simulation to test multi-agent framework
- Continue interaction with expert / novice CM
- Experiment with prototype: Elicit expert opinion

Deliverables

- A prototype general purpose situational simulation environment
- Implementation of a situational simulation of a specific construction project
- Expert opinion

Potential Contributions

- A general purpose environment for educational simulations
- A platform that promotes collaborative efforts in construction education
- An expressive formalism to represent and reason about construction knowledge
- A multi-agent interactive simulation environment
 - for a complex real world domain
 - without using SOAR or DIS technology
- Knowledge organization patterns of construction managers

Limitations of Research

- Agent reasoning is limited by the knowledge base
 - Reasoning limited to conjunctive clauses
- Embodiment, Embeddedness and Adaptation (Winn 2002)
 - This research aims only at embeddedness and embodiment but does not promise adaptive behavior
- Objective testing of the environment is beyond the scope of this research
- The agent entity framework can be used to create a general purpose programming language for construction simulations: Implementation of such a language is beyond the scope of this research

Thank you

Questions?

Activity Cycle Diagrams

- Earth Moving Operation Example
- Activities
 - PushLoad
 - BackTrack
 - Haul
 - DumpAndSpread
 - Return

The SOAR Framework

The SOAR Framework

Finite State Machine

- A Model of computation:
 Kripke Structure: *M* = <*S*,*I*,*R*,*L*>
- *S* : Finite set of states
- $\mathcal{I} \subseteq S$: Set of initial states
- $\mathcal{R} \subseteq S \times S$: Transition functions mapping current states to successive states
- *L*: Language