
Real-Time Finite Element Modeling for Surgery Simulation: An Application
to Virtual Suturing

Jeffrey Berkley1,4, George Turkiyyah2, Daniel Berg3, Mark Ganter4, Suzanne Weghorst1

University of Washington, Seattle, WA

1. Human Interface Technology Lab, 2. Department of Civil Engineering, 3. Division of Dermatology,
4. Department of Mechanical Engineering

Real-time finite element (FE) analysis can be used to represent complex deformable geometries in
virtual environments. The need for accurate surgical simulation has spurred the development of
many of the new real-time FE methodologies that enable haptic support and real-time deformation.
These techniques are computationally intensive and it has proved a challenge to achieve the high
modeling resolutions required to accurately represent complex anatomies. The authors present a
new real-time methodology based on linear FE analysis that is appropriate for a wide range of
surgical simulation applications. A methodology based is proposed that is characterized by high
model resolution, low preprocessing time, unrestricted multi-point surface contact and adjustable
boundary conditions. These features make the method ideal for modeling suturing, which is an
element common to almost every surgical procedure. This paper describes constraints in the
context of a Suturing Simulator currently being developed by the authors.

I. INTRODUCTION

Accurate real-time rendering of deformable objects has proved a difficult challenge.

Continuum mechanic based methodologies that account for complex geometries and material

properties typically require significant computation. As a result, it is difficult to utilize these

methods and achieve the 30 Hz update rates desired for graphical rendering. In virtual reality

applications that employ haptic feedback (the sense of touch), the demand is even more taxing,

sometimes exceeding visual demands by more than an order of magnitude.

Finite element (FE) modeling is an accurate continuum mechanics based methodology

that has served as an industry standard for prototype testing and design. Bridges, cars, ships,

airplanes, prosthetic devices and mechanical parts represent only a small sample of products that

have depended on the accuracy of FE modeling for development. While conventional FE

formulations are not applicable to real-time rendering for graphics or haptics, FE modeling

 1

methodologies that utilize novel preprocessing techniques and alternative real-time solving

methodologies are starting to emerge.

Most of the advances in real-time FE modeling have occurred as a result of the demand

for realistic surgery simulation. For many medical procedures, there are no efficient means for

training a medical student to perform a surgery and practice on real patients is often the only

option. It is generally expected that simulation training will one day be as important to medicine

as it is now to aviation. However, one of the reasons the medical community is currently

reluctant to accept many of the commercial simulators available is that they do not provide

sufficient realism. As a means of achieving more accurate deformation and haptic interaction, a

number of real-time FE based approaches have been offered in context with surgery simulation.

II. SUTURING IN SURGERY SIMULATION

Suturing is a task fundamental to almost every surgical procedure. For the year of 1999,

the number of skin surgery procedures covered by Medicare that required suturing totaled

approximately 2.5 million (number based on excisions, repairs, adjacent tissue transfers, skin

graphs and island pedicle graphs) [1]. While this number is substantial, it represents only a small

portion of the total number of procedures across all disciplines that required suturing in 1999.

Because of the broad application, suturing was considered by the authors to be an ideal

application for real-time FE modeling.

Surgery on the skin ranges from simple suturing of lacerations to complex tissue

movements such as flaps. Training in cutaneous surgery uses the traditional surgical

apprenticeship model aided by tools such as suturing boards, pig’s foot training courses and/or

the use of live animals. For a variety of reasons, these methods are not ideal. At the University

of Washington the authors have been developing a suturing simulator based on finite element

 2

modeling methods that allow for real-time haptic interaction and soft tissue deformation [2-4].

The requirements of this suturing simulator have directly influenced the development of our real-

time FE methodologies.

Table 1 and figure 1 describe how the authors break down the task of suturing. Given

these steps, certain demands are placed on real-time modeling algorithms. The following is a list

of the capabilities required to achieve an effective suturing simulator:

Accurate Deformation and Force-Feedback: Every step of table 1 will result in

deformation of the tissue. Reaction forces must also be determined for haptic feedback.

To accurately model various complex tissue structures, the FE model must be high in

resolution (thousands of nodes and elements). This is required for visually appealing

graphical rendering of complex geometries. Even at high resolution, the FE model must

allow for rapid determination of reaction forces to meet the demands of haptic rendering.

Contact at Any Point on the Model Surface: One way to evaluate a student’s suturing

skills is by measuring the distance the needle is inserted from the wound and how far

sutures are placed from each other. This means that contact must be allowed anywhere

on the surface of the model and cannot be limited to the locations of the surface nodes.

Otherwise, there will be inherent measurement error when determining suture placement.

Adjustable Boundary Conditions: Sutures can be modeled as stiff springs that only

support tension. Springs could be added and removed from the FE stiffness matrix or

they could be modeled through the applied force vector. If a large stiffness matrix is

preprocessed to assume a format more efficient than the original stiffness matrix, it

becomes computationally expensive to make substantial changes to the mesh. For this

 3

reason, the ability to model sutures through changing applied forces is an attractive

alternative.

Multipoint Contact: When applying a suture, the needle enters at one point and exits at

another. This means that at least two points of displacement must be applied to model

needle insertion. Suturing also involves the use of two tools: a needle driver and

tweezers or a skin hook (see figure 2). This adds an additional point or points of contact

where displacement must be defined. Not only must displacements be prescribed at

multiple points, but the appropriate reaction forces must also be determined to provide

force-feedback for each tool.

Rapid Preprocessing: Preprocessing can be used to compress FE equations so that high-

resolution models can be solved in real-time. Unfortunately, if changes are made to the

resting configuration of the FE mesh, all preprocessing must be repeated. While there are

many surgical procedures that could be simulated without changing the original mesh, the

majority of procedures do require tasks such as cutting. As another example, one can

envision a teacher creating a homework set of skin defects that must be repaired. The

ability to drag and drop skin defects onto various anatomical models would require rapid

updates to the original FE meshes. Preprocessing must therefore be accomplished

quickly enough so that down time for mesh alteration does not become a major

distraction.

To date, no methodology has been reported in the literature that accommodates all of the

objectives defined above. After describing some of the more recent applications of FE modeling

to surgery simulation, the authors present a constraint-based methodology, which is appropriate

 4

for suturing simulation. Constraints can also be used to enhance existing methodologies by

increasing model resolution and by reducing pre-processing time.

III. APPLICATIONS OF FE MODELING TO SURGERY SIMULATION

Accurate deformation and haptic feedback has been achieved through real-time FE

modeling. However, surgery simulation has demands that are different from typical engineering

and animation applications. Biological structures have complex anatomies that require

significant model resolution for visual appeal and modeling accuracy. Biological materials are

also difficult to obtain and model. Besides exhibiting properties such as non-linearity,

anisotropy, creep, stress relaxation and visco-elasticity, material properties can vary substantially

between subject and even within a small local tissue region on a single subject. On the other

hand, FE modeling for surgery simulation may require only selected variables to be computed.

In most cases, it is not necessary to calculate displacement at interior model points that are not

being rendered. Reaction forces are only required where the user touches the model. Stress and

strain calculation may not be essential. The principle of “calculate only what you need” has

served as the basis for many real-time FE approaches.

The term “FE modeling” can refer to a wide variety of mathematical representations.

Different materials lend themselves to different approaches and real-time analysis has only been

achieved within a small fraction of problem domains. It is safe to say that the literature has only

just begun to address the many obstacles that must be overcome to achieve truly accurate real-

time tissue modeling. Advances must take place in steps, and before addressing some of the

more complex issues it would be valuable to achieve adequately high model resolution for

simple linear models. After thoroughly solving the problem of real-time linear modeling, we

 5

will be better prepared to address more complex issues such as non-linear property modeling and

real-time mesh alteration (such as for cutting).

In FE analysis, the governing matrix equation is

fKddDdM =+′+′′ (Eq. 1)

where M is the mass matrix, D is the damping matrix, K is the stiffness matrix, d is the nodal

displacement and f is the applied force. The size of each matrix in equation 1 is n x n, where n is

three times the total number of nodes in the case of 3D modeling. Each of these matrices is

assembled from the elements of an FE mesh (see figure 3). Since the elements are of simple shapes,

such as tetrahedrons or hexahedrons, continuum mechanics can be used to define their behavior.

The assembly of many simple shaped elements can approximate the behavior of a complex

geometry. The process is somewhat analogous to building a model from lagos, where various

shapes can be achieved by piecing together lago blocks. The accuracy of an FE model generally

increases with the number of elements used to approximate its geometry. A more in depth

discussion of the formulation of FE equations can be found in The Finite Element Method by

Zienkiewicz and Taylor.

Before real-time FE approaches existed, some applications simply used FE analysis for

predictive value, and did not require real-time computation. Both Larabee and Pieper have used the

FE method to predict the results of plastic surgery [5, 6]. Animations of muscle contraction and skin

deformation during grasping have been based on the FE method [7, 8]. Waters and Terzoplos have

used FE analysis to computer-synthesize animation of facial expressions [9].

Other investigators have used FE analysis to optimize simulators that utilize alternative

methods, such as spring models, for providing force-feedback and deformation [10]. Cotin et al

 6

developed a tensor-based methodology that relied on FE modeling for optimization [11, 12]. After

creating a tetrahedral based FE model of a liver with commercial software, tensors to control nodal

deformation and force-feedback were optimized by exploiting the linear nature of elastic FE

deformation results. Each surface node was associated with multiple tensors to account for every

possibility of node contact. This methodology does provide a means for approximating FE results

for high-resolution models, however a lengthy preprocessing period is required. More recently,

anisotropic material properties have been incorporated into a liver model [13].

Bro-Nielsen et al was one of the first to apply the “calculate only what you need” principle to

real-time FE based deformation [14]. They applied a process known as condensation (described in

depth later) to reduce the problem from a size of n x n to the size of v x v (where v is three times the

number of visible nodes for 3D). After condensation, the reduced stiffness matrix was inverted to

permit the calculation of visible nodal displacements. This reduced format gives the exact same

displacement results that can be obtained with conventional FE analysis. Using a Silicon Graphics

ONYX with four MIPS R4400 processors, a model of the lower leg with 250 visible nodes was

deformed with a visual update rate of 20 Hz. In this demonstration, a simulated force was applied to

only one node, and force-feedback was not supported. Hansen used a similar approach to the

modeling of brain tissue, however Hansen’s simulator did incorporate force-feedback [15].

James and Pai have achieved real-time interaction through boundary element models (BEMs)

[16]. Given the geometry of a model, homogeneous material properties, and a set of boundary

conditions, acceptable graphical update rates are achievable by pre-computing the discrete Green’s

functions of a referenced boundary value problem. A 3D model with n degrees of nodal freedom

and s applied boundary conditions can be solved for one point of contact at a rate of 18ns flops.

Changes in the boundary conditions cost an additional O(s3) operations and O(sn) operations after

 7

the initial change. A force interpolation scheme was used to approximate forces in-between time

steps that allowed a higher haptic rate than visual rate to be supported. While this methodology was

not applied to surgical simulation it does indicate an alternative to FE analysis. Unfortunately,

boundary element analysis does not accommodate inhomogeneous material properties, so its

application to surgery simulation may be limited.

An increasing number of applications are making use of dynamic FE modeling. By using a

lumped mass representation, with a similarly derived damping matrix, explicit integration can be

used to achieve acceptable graphical rates with run time computation costs scaling linearly with the

number of nodes.

The virtual environment for eye-surgery proposed be Sagar et al was one of the earlier

applications based on dynamic analysis [17]. The Cornea was modeled with a nonlinear elastic

material (Mooney-Rivilin material) and cutting was allowed. Parallel processing was used to

separate graphical rendering from mathematical computation in order to increase performance speed.

The model contained only a small number of elements, but NURBS (non-uniform rational B-splines)

were used to interpolate between the nodes. The simulation did not provide real-time computation

in that deformation was only calculated once per second; however, stress distribution color overlays

on the cornea provided a means of visual feedback previously unknown to surgery simulators.

Computation can also be reduced in dynamic analysis if only the most significant vibration

modes are used to calculate deformation [18]. Because haptics requires a significantly higher update

rate than graphics, Zhuang achieved haptic interaction through a force interpolation scheme.

Another approach is to apply Spectral Lanczos Decomposition (based on Laplace transforms) rather

than standard numerical integration [19]. The reduction in computation costs allows more nodes to

be used than possible by direct application of dynamic analysis.

 8

Dynamic modeling coupled with non-linear material properties is starting to receive some

recent attention [18, 20, 21]. Wu et al have applied the Mooney-Rivlin model to dynamic analysis

with an emphasis on adaptive meshing. This allows greater model resolution at the region of

contact with courser representation at distant regions. In a preprocessing stage, a high-resolution

mesh is converted to a low-resolution mesh by combining adjacent elements throughout the model.

The resulting elemental changes are stored so that elements can be restored at run-time. This allows

rapid run-time refinement of the course mesh based on where contact takes place. Using an 800

MHz Pentium III PC, a model with 2,200 vertices and 4,500 membrane elements has been solved at

rate of 20 frames per second. Haptic interaction has not yet been added, however, the authors

anticipate adding haptics by using a multi-rate scheme to interpolate between time steps [22].

IV. METHODS

The authors have developed a methodology that applies constraints to linear elastic

models. The methodology emphasizes high model resolution, multipoint contact, rapid

preprocessing and accommodates dynamically changing boundary conditions. Although this

method could easily be adapted to dynamic analysis without requiring a lumped mass matrix, the

authors feel that the inclusion of dynamic effects is unnecessary for simulating suturing.

Suturing requires slow precise concentrated movements, so dynamic contributions are generally

negligible.

In order to illustrate the advantages of constraints over other real-time FE methodologies,

it is necessary to describe the drawbacks of typical methods. Only the application of static linear

analysis in three dimensions will be discussed in the following subsections.

 9

A. LU Decomposition

The linear FE equation described by equation 1 can be reduced if dynamic effects are

ignored.

fKd = (Eq. 2)

In equation 2, K is an nxn stiffness matrix and d and f are nx1 vectors representing nodal

displacements and applied force respectively. If the above equation were to be used to simulate

suturing, the vectors d and f would typically be determined after the user makes contact with an

FE model that represents a soft tissue structure. Usually, displacement will be applied at a set of

contact nodes and the reaction forces must be determined to support force feedback at a

sufficiently high update rate. The displacements that result at the nodes not in contact must be

determined at graphical rates (approximately 30 Hz). The unknown variables are therefore the

reaction force at the contact nodes and the displacement of non-contact nodes.

Most force-feedback devices (such as the Phantom) will allow supporting software to

define a directional force that is derived from a given tool position. Assume that a relationship

can be established between the movement of the tool tip and the displacement of model nodes in

contact with the tool. There may also be known applied static forces, such as to represent the

pretension of skin, and dynamically changing forces, such as to model previously applied

sutures.

The typical approach to solving a set of linear equations, such as those of equation 2,

would be LU decomposition [23]. For a 100% dense matrix (no zero values), 1/3n3 calculations

are required to break an nxn matrix down into lower (L) and upper (U) triangular matrices.

Throughout this paper, the word “calculations” will refer only to multiplications and divisions

since the computation time required for additions and subtractions is minimal in comparison.

 10

For the purpose of VR simulation, the LU components of K could be determined during a

preprocessing stage in order not to affect run-time performance. Forward and backward

substitution using the L and U matrices would require between 1/2n2 and n2 calculations,

depending on the location of the first nonzero value in the f vector.

The K matrix is usually very sparse, with the sparsity depending on the number of nodes,

the geometry of the mesh, the type of elements used, etc. A model with 1,000 nodes may only

have nonzero values in about 1% of the entire stiffness matrix (sparsity=0.01). A sparse K

matrix will result in sparse LU components, which lend themselves to efficient sparse matrix

solving algorithms. The value of using sparse LU solving algorithms becomes more profound

as models get larger. When using sparse matrix techniques, a 100 node model might benefit

from only a 20% decrease in total calculations, while a 1,000 node model might yield an 80%

efficiency increase. (these estimates were established by using the author’s sparse LU

decomposition C++ code with arbitrary FE meshes). The effectiveness of sparse LU solving

algorithms varies for different FE mesh structures and is largely dependent on the sparse makeup

of the stiffness matrix. Reordering the mesh can also improve efficiency (i.e. Cholesky

Decomposition, reverse Cuthill-McKee reordering, etc.).

An approximate limit can be determined for model size if LU decomposition were to be

used to solve equation 2 in real time. Assume that a computer that performs 20 million floating-

point operations per second (flops) is to be used to run a real-time simulation. Also assume that

graphical updates are to be maintained at 30 Hz and haptic updates should not fall bellow 300

Hz. Unfortunately, LU decomposition does not facilitate decoupling of graphical and haptic

calculations, so model deformation calculations must also be determined at 300 Hz. LU

components can be determined during a preprocessing stage in order not to effect run time

 11

performance. Even if an 80% efficiency increase is assumed due to sparse matrix solving

algorithms, the maximum number of nodes that could be used given the above requirements is

192 nodes (solving for (0.2)(n2)(300)=2.0E+07 where n is three times the number of nodes for

3D simulation). Such a small model is unsuitable for most surgery simulation applications.

These limits also ignore additional software overhead that might be required to run a simulator

(i.e. rendering surface polygons and texture maps, collision detection, etc.).

B. Using the Inverse of the Stiffness Matrix

When simulation suturing, the f vector of equation 2 is typically very sparse with nonzero

values only occurring at locations pertaining to applied sutures. In addition, there are usually

only a small number of contact points where reaction forces must be determined to support force

feedback. Because of this, the use of a pre-computed inverse of the stiffness matrix at run time is

more efficient than LU decomposition. The inverse of the stiffness matrix can be determined in

approximately αn3 computations, where n is three times the number of nodes and α refers to

efficiency gains that can be achieved through sparse LU decomposition techniques. At run time

when contact is made with virtual FE object, equation 2 can be rearranged to take the format

given below.
















=









contact

contact no

contact

contact no

f
f

KiKi
KiKi

d
d

bbab

T
abaa (Eq. 3)

In equation 3, the known variables are dcontact and fno contact and Ki is the inverse of K. It should be

noted that Ki is almost 100% dense, so sparse matrix techniques that depend on a sparse Ki are

not relevant. The size of each sub-matrix is indicated by subscripts a and b. For three-

dimensional analysis, b is three time the number of contact nodes and a is equal to n-b. From

equation 3, two equations can be derived to obtain the unknown variables at run-time.

 12

))((contact nocontact
1

contact fKidKif abbb −= − (Eq. 4)

contactcontact nocontact no fKifKid T
abaa += (Eq. 5)

The format of equation 4 and 5 illustrate how a sparse f vector can significantly reduce

computation. To obtain reaction forces from equation 4, b3+b2+bl calculations are required

where l is the number of nonzero fno contact variables. To find the nodal displacements, an

additional al+ab calculations are necessary.

It is now possible to determine model limitations using a pre-computed inverse of the

stiffness matrix and equations 4 and 5. Assume again that a 20 million-flop machine is being

utilized with a very primitive suturing simulator. A simple suture might be modeled as a spring

that ties together two nodes (modeling sutures through the force vector will be addressed in more

detail later). If a maximum of ten sutures are to be applied, l will be no greater than 60 (20

suture nodes multiplied by three degrees of freedom). The derivation of equations 4 and 5 has

allowed force feedback calculations to be decoupled from deformation equations, so both

graphical and haptic limits are determined separately. If haptics are to be maintained at 300 Hz,

contact must be limited to 13 nodes (solving for (b3+b2+60b)(300)= 2.0E+07 where the

maximum number of contact nodes is b/3). Haptic calculations are only dependent on the

number of contact nodes and not the size of the model. Ignoring any additional software

overhead and assuming the that maximum number of nodes are in contact, a graphical update

rate of 30 Hz could be maintained for models with 2,257 nodes (solving for

(60a+39a)*30=2.0E+07 where the maximum number of nodes is (a+b)/3). So long as the

computer running the simulation had at least 92 Mbytes of RAM to hold the inverted stiffness

matrix, a 2,257 node model that allows 13 nodes in simultaneous contact might be effective for

 13

simulating suturing. However, limiting contact only to the location of nodes conflicts with the

requirements outlined by the authors in section II.

C. Condensation

Given the simple scenario outlined above, the use of a pre-computed inverse of the

stiffness matrix and equations 4 and 5 might be adequate for simulating suturing in some

situations. However, performance can be improved if another simple step is taken in the

preprocessing stage. In most cases, it is not necessary to determine the displacement of nodes

that cannot be seen or touched. It makes sense to remove these nodes from run-time

computation. This was the approach taken by Bro-Nielsen et al as discussed in section III.









=
















b

a

b

a

bb
T

ab

abaa

f
f

d
d

KK
KK

 or
bbbba

T
ab

ababaaa

fdKdK

fdKdK

=+

=+

**

**
 (Eq. 6)

In equation 6, a corresponds to the portion of the stiffness matrix that will be condensed

out and b corresponds to the portion that will be kept. If the nodes of the model are ordered so

that the visible nodes are listed last, b will correspond to the visible nodes. Equation 6 can then

be rearranged to take the form of equation 7.

 ** and * where

**
*)**(**

11

11

abaa
T

abbbdaa
T

abf

bdafb

babaa
T

abbbaaa
T

abb

KKKKPKKP

dPfPf
dKKKKfKKf

−−

−−

−==

+=
−+=

 (Eq. 7)

The size of Pf is bxa and the size of Pd is bxb. It is assumed that fa remains constant at

run-time. Better yet, fa will equal zero for most application. Equation 7 can therefore be reduced

to the following:

visvisvis

bbd

fdK

fdP

=

=
or (Eq. 8)

 14

The format of equation 8 is very similar to that of equation 2, however, the stiffness

matrix has been reduced from an nxn matrix to a vxv matrix, where v is three times the number

of visible nodes. By sacrificing time during a preprocessing stage for condensation, performance

improves at run-time since the number of non-visible nodes will not affect computation speed. If

the inverse of Kvis were used in the suturing simulator described earlier, a model of 2,257 visible

nodes would run in real-time rather than a model of 2,257 total nodes. This can be a significant

improvement in model resolution and reduces the negative effects associated with contact limited

to node location.

In the interest of rapid preprocessing, it is important to consider the methodology used to

obtain the inverse of a condensed matrix. LU decomposition that takes advantage of the sparsity

of the stiffness matrix is ideal for large meshes. However, a condensed stiffness matrix can

become very dense. In this case, it is better to use Cholesky decomposition, which takes

advantage of the fact that an FE stiffness matrix is symmetric and positive definite. For dense

matrices, Cholesky decomposition is a factor or two faster than sparse LU decomposition [23].

D. Constraints

The disadvantage of the methods described above is that contact must take place at the

nodes. If model resolution is not high enough, the user may notice when contact “jumps” to the

location of the nearest node. This can have a detrimental effect on performance. By using the

constraints approach, contact can be accommodated anywhere on the surface of the model.

Given a contact point on the face of any surface tetrahedral element, three nodes on that

face can be constrained through a shape function [24].

 15

332211

3
3

2
2

1
1

or
xxxx

x
A
A

x
A
A

x
A
A

x

λλλ ++=

++=

 (Eq. 9)

In equation 9, the triangle formed by three nodes on a tetrahedral element face can be

sub-sectioned into three individual triangles given the position of a contact point. The same

shape functions can be used to map the y and z dimensions. Note that when the contact point is

at node 1, 11
1 == λ

A
A

, 032 == λλ and equation 9 yields 1xx = . Shape functions are unique for

each element type, so the above equation is only relevant to 2D triangular or 3D tetrahedral

elements.

Because of the linear nature of the problem and the fact that similar shape functions are

used to create tetrahedral elements, these shape functions also can map displacement as shown in

equation 10.

contactd
dz
dy
dx

dz
dy
dx
dz
dy
dx
dz
dy
dx

=















=























































3

3

3

2

2

2

1

1

1

321

321

321

000000
000000
000000

λλλ
λλλ

λλλ
 (Eq. 10)

 16

The subscripts of equation 10 refer to the constrained nodes on the element face where contact

occurs. To set up a constraint problem, the shape functions of equation 10 are used, however,

they are written to reflect every node in the finite element model. The matrix above is expanded

with zeros in matrix locations that correspond to nodes not constrained by the shape functions.

Using the displacement vector d of equation 2 and C to define the expanded matrix holding the

shape functions and additional zeros, the displacement at a contact point can be defined in the

following:

contactdCd = (Eq. 11)

The entire constraint problem can now be written by combining equation 2 and 11.









=
















contactcontact0 d
f

f
d

C
CK T

 (Eq. 12)

The unknowns of equation 12 are fcontact and d, while f and dcontact are known after contact occurs.

While the inverse of the matrix in equation 12 could be used to solve for fcontact and d, this would

be ill advised since the variables of C are not defined until contact occurs. For large models, it

would not be possible to determine the inverse of this matrix in real time.

)()(111
contact contact

T dfCKCCKf −= −−− (Eq. 13)

)(contact
1 fCfKd T−= − (Eq. 14)

Equations 13 and 14 are derived from equation 12 and allow the reaction force at a

contact point to be determined along with the displacement of the nodes. This unique

arrangement promotes the use of sparse matrix solving routines. The order in which these

equations are solved is crucial for minimizing computation expense. Contact at only one point

will first be considered to simplify explanation.

 17

In equation 13, sparse matrices and vectors enclose K-1. Only nonzero elements of C are

multiplied with K-1. However, it is not necessary to multiply nonzero values of C with every

column of K-1. Many rows in CT and f are filled with only zeros. For this reason columns of K-1

that correspond to these nonzero rows can be ignored. An example of this is illustrated in the

following:

































































































































−−

−

−

−

−

−

−

−

−

−

−

−

−

−

−−−−−−−−−−−−−−−

0
0
0

0
0
0
0
0
0

.............
..
..
..
..
..
..
..
..
..
..
..
..
..

000000000000
000000000000
000000000000

2

2

2

1

1

1

1
15,15

1
1,15

1
1,14

1
1,13

1
1,12

1
1,11

1
1,10

1
1,9

1
1,8

1
1,7

1
1,6

1
1,5

1
1,4

1
1,3

1
1,2

1
15,1

1
14,1

1
13,1

1
12,1

1
11,1

1
10,1

1
9,1

1
8,1

1
7,1

1
6,1

1
5,1

1
4,1

1
3,1

1
2,1

1
1,1

321

321

321

x

x

x

z

y

x

f
f
f

f
f
f

KK
K
K
K
K
K
K
K
K
K
K
K
K
K

KKKKKKKKKKKKKKK

λλλ
λλλ

λλλ

 (Eq. 15a)

which is the same as

















































































−−−−−−

−−−−−−

−−−−−−

−−−−−−

−−−−−−

−−−−−−

−−−−−−

−−−−−−

−−−−−−

z

y

x

z

y

x

f
f
f
f
f
f

KKKKKK
KKKKKK
KKKKKK
KKKKKK
KKKKKK
KKKKKK
KKKKKK
KKKKKK
KKKKKK

2

2

2

1

1

1

1
12,12

1
11,12

1
10,12

1
3,12

1
2,12

1
1,12

1
12,11

1
11,11

1
10,11

1
3,11

1
2,11

1
1,11

1
12,10

1
11,10

1
10,10

1
1,10

1
1,10

1
1,10

1
12,9

1
11,9

1
10,9

1
3,9

1
2,9

1
1,9

1
12,8

1
11,8

1
10,8

1
3,8

1
2,8

1
1,8

1
12,7

1
11,7

1
10,7

1
3,7

1
2,7

1
1,7

1
12,3

1
11,3

1
10,3

1
3,3

1
2,3

1
1,3

1
12,2

1
11,2

1
10,2

1
3,2

1
2,2

1
1,2

1
12,1

1
11,1

1
10,1

1
3,1

1
2,1

1
1,1

321

321

321

000000
000000
000000

λλλ
λλλ

λλλ
 (Eq. 15b)

By multiplying only nonzero values, the total calculations required to solve equation 15 is

reduced from 720 to 72. Table 2 and 3 describes the order in which equations 13 and 14 should

be solved and the number of calculations is defined for each step.

 18

In the case where there is more than one contact point, equation 9 is used to add

additional rows to C. Only one point of contact should occur per element face, and each contact

point will add three rows to C. Multiple contact points on a single face can be averaged. As an

example, three points of contact on three separate element faces would require C to have nine

rows and there would be 27 nonzero values.

Assume again that a computer that performs 20 million flops is to be used for simulating

suturing. Unlike the earlier scenarios described, sutures can now be placed anywhere on the

model. If a suture is modeled as a simple spring that ties two points together and the force

exerted at each point is distributed between three nodes, there will be 18 applied forces per

suture (to be discussed in more detail in section V). If a maximum of ten sutures are to be

applied, l will be no greater than 180. From table 2, it can be seen that 27c3+63c2+12cl

operations are required to determine the reaction forces at the contact nodes, where c is the

number of contact points. With this scenario, a total of 10 simultaneous contact points could be

applied at a haptic update rate of 300 Hz (solving for (18c3+63c2+12cl)(300)=2.0E+07 where l

equals 180). If 12 points of contact exist, a maximum number of 1,058 nodes could be

accommodated if graphical updates are to be maintained at 30 Hz (solving for (9c+

n(3c+l))(30)= 2.0E+07 where l equals 180 and c is equal to 10). If the inverse of Kvis is used in

equations 12 through 14 instead of the inverse of K, a model with 1,058 visible nodes could be

solved in real-time. The number of contact points is not affected by using the inverse of Kvis

instead of K. Suturing can accurately be simulated under these limitations and the requirement

defined in section III can be satisfied.

At first glance, it may seem that we have lost model resolution by using constraints

instead of the inverse of a condensed stiffness matrix. However, in the case described earlier,

 19

180 dynamically changing forces are being applied rather than just 60 as described for node

contact. This was necessary to allow 10 sutures to be placed anywhere on the model. If only 60

forces were applied, 2,314 surface node models could be solved in real-time with simultaneous

contact at 10 points (as compared to 2,257 surface nodes when using condensation and the

inverse of the stiffness matrix). Therefore, for this type of scenario, a bit more resolution has

been gained in addition to the ability to touch a model anywhere on its surface.

V. SUTURING SIMULATION APPLICATION

The suturing simulator that is currently under development by the authors does not yet

reflect all the suture application steps of table 1. This is a work in progress, however, even in its

present state, the proof of concept for many features of the method outlined above can be

demonstrated.

The authors have created a Fast FE Modeling Software Platform that allows interaction

with real-time FE models based on the constraints approach. A 1 GHz Athelon processor PC is

being utilized with an Oxygen GVX video card. Currently, only one Phantom Premium device

is being used for force-feedback. Shutter glasses allow models to be viewed in stereo through a

monitor or through a Reach-In system that allows virtual images to be co-located with the users

hands as shown in figure 7. Models can also be viewed in an augmented reality environment

through software based on the AR Tool Kit [25-28]. In the augmented environment, deformation

results are sent over the Internet and can be viewed remotely. This could allow for remote

instruction and peer evaluation of a surgical procedure.

The suturing simulator typically utilizes a model of a hand that has a laceration on the

palm. Figure 5 shows multiple image captures of the arm as the laceration is closed with three

sutures. This model was developed from MRI scans which were used to generate an implicit

 20

model. The implicit model was meshed with a technique called point repulsion [29, 30]. The

details of the authors’ model generation process have been described in a previous publication

[2]. The bone surface is represented with fixed boundary nodes. The various soft tissue layers

have not yet been segmented and are currently represented as one homogenous tissue. Material

properties were roughly approximated using values from the literature [31]. Nodal resolution is

highest near the wound for greater modeling accuracy at the region of interest.

There are various options for viewing the model in the Fast FE Modeling Software

Platform. One useful feature is real-time stress-strain visualization. Since it is important to

minimize the stress inflicted on tissue during every surgical procedure, it is helpful to be able to

visualize these stresses. Not only does stress-strain monitoring allow peak tissue stresses to be

recorded for procedure assessment, but also the final results of a procedure can be evaluated

through the color plots of stress and strain. Excessive tissue stress can lead to scarring and

improper suture placement can be identified through the visualization of excessive stress

concentrations (see figure 6).

Virtual tools determine how you interact with a model. A real-time FE model can be

manipulated by applying forces and/or displacements. When building a suturing simulator it is

necessary to develop complex tools that imitate needles and sutures. Determining how needles

and sutures impart forces and displacements to tissue is by no means trivial, however, the

constraints approach is appropriate for accommodating such complex interaction.

The needle driver tool is loaded as a dynamic link library. It is based on a generic parent

class that follows a structure common to all tools used in the Fast FE Modeling Software

Platform. Displayable polygons, texture map and touchable points are typical class elements.

Contact with the needle driver is initially limited to the tip of the needle. When the needle tip

 21

touches the surface of a model, a vector representing the orientation of the needle with respect to

the model surface is determined. The dot product between the needle orientation vector and the

surface normal is multiplied with the applied force magnitude. If this value exceeds a prescribed

needle puncture force, the needle “pops” through the skin. This process emphasizes proper

needle orientation which is one criteria commonly used in evaluating suturing. The user has the

option to visualize the needle orientation vector to assist with aligning the needle. When

visualizing the needle alignment vector, the needle color will change to indicate proper

alignment.

In the current simulator, the needle enters and exits at the same point. While the needle

can be inserted anywhere on the model surface, multipoint interaction has not yet been

incorporated as outlined in the steps of table 1. After puncture, the contact point is secured to the

shaft of the needle. Some simple rules that incorporate friction and needle rotation determine

how the contact point slides along the needle. Complete needle rotation causes the needle to

pass out of the tissue.

Sutures are graphically represented as line vectors. After passing the needle through the

tissue on one side of the wound, a suture is rendered as a line that connects the needle to the first

anchor point. The suture does not offer any resistance at this stage. After the needle has been

passed through the tissue on the opposite side of the wound, the suture can be pulled tight in

order to close the wound. The first anchor point on the skin is considered fixed to the end of the

suture. The second anchor point is treated as a “pulley” that allows the suture to slide through,

but will also bear a load. This way tension applied to the suture can draw the two anchor points

together. An applied displacement based on pulling the needle moves the first anchor point and

an applied force resulting from resistance at the “pulley” moves the second anchor point.

 22

Pressing a key on the keyboard cuts the suture and automatically ties the knot. This type of

modeling was used because the current simulator system only has one force feedback device.

After the suture is tied, it is modeled as a stiff spring that only supports tension. The

force that the suture applies is based on the displacement of the two suture anchoring points.

These applied suture forces are not solved simultaneously with model deformation, but are based

on deformations determined during previous time steps. An average force is resolved over ten

time steps and is then inserted into the applied force vector. Averaging over multiple steps is

crucial for avoiding instabilities. Since suture forces are applied on face points rather than at

nodes, a suture force is distributed between face nodes based on shape functions after needle

contact (see equation 9). Sutures can be placed anywhere on the model and do not have to be

placed in a position that closes the wound. Any large number of sutures can be applied because

contact currently occurs at no more than one point at a time.

The suturing process described above was initially modeled in this simple fashion

because the simulation system utilized only contains one force-feedback device. The addition of

a second force-feedback device will allow much more realistic modeling as outlined in table 1.

However, even the current simulator has value in that it allows criteria such as tissue stress,

needle orientation and suture placement to be evaluated. The prime emphasis of the simulator is

to demonstrate that accurate deformation and force-feedback can be achieved through the

constraints approach.

VI. DISCUSSION AND CONCLUSIONS

The constraints approach has proved to be well suited for simulating suturing. Even

though the hand model used contains only 863 total nodes, well below what is capable using

constraints, informal inquiry of dermatological surgeons indicates that model resolution and

 23

deformation accuracy is suitable for suture simulation training. The deformation of the current

arm model can easily be rendered at 30 Hz and force-feedback is maintained above 1000 Hz

(which is a requirement when using a phantom force feedback device).

While modeling size limitations may be comparable for node and face contact, simulation

performance improves when using face contact. The authors observed this when comparing the

current simulator to previous simulators created by the authors where contact was limited to the

surface nodes. When contact is limited to the nodes, a model with higher node resolution is

required. Otherwise, adjacent nodes will “jump” to the point of contact and this sudden

deformation shift and reaction force is distracting. In addition, models with higher nodal

resolution require more preprocessing time and demand extra storage and memory. Face contact

also results in better surgical tool interaction with soft tissue, such as when positioning a needle

for insertion. Accurate contact can be important for a variety of surgical procedures.

Creating a fast FE model through constraints requires minimal preprocessing time. When

using a 1 GHz Athelon processor based PC, it took 4 minutes and 9 seconds to condense the

original stiffness matrix and take the inverse of the resulting condensed matrix. All

preprocessing was performed using a single thread application. Significant performance gains

could be achieved using parallel processing if a machine with multiple processors was utilized.

The constraints approach allows for applied forces that change dynamically. This is what

made it possible for us to model the sutures without altering the FE stiffness matrix. The ability

to apply loads as needed enables robust interaction with the model. Not only do flexible

boundary conditions allow for better modeling of tool interaction, but environmental factors,

such as gravity, might also be approximated through the applied force vector.

 24

Work is underway to increase the modeling accuracy of the suturing tools. Multipoint

contact will allow suturing to be simulated with the steps described in table 1. It is the intention

the authors to add a second force-feedback device so that both a needle driver and skin hook can

be used. Farther down the road, the authors plan to tackle the complex issue of knot tying. The

sutures themselves could be modeled with fast FE analysis.

The major limitation of the constraints approach is that the original undeformed mesh

cannot be easily altered. Substantial changes to the original mesh structure mean that the entire

stiffness matrix must be updated, condensed and inverted again. Most surgical procedures

involve the cutting of soft tissue, which necessitates real-time mesh alterations. Non-linear

material property representation also requires updates in real-time to the FE stiffness matrix. In

its present state, the constraints approach is not appropriate for such modeling scenarios. For this

reason the authors are developing alternative fast FE methodologies that allow real-time mesh

updates. Initial research indicates that these new methodologies will not allow the modeling

resolution achievable through constraints. However, modeling resolution will be sufficient for

many simulation applications. Most surgical procedures involve isolated cutting in particular

regions of interest. These regions could be modeled with dynamically changing meshes while

exterior regions could be modeled with constraints. It is expected that these hybrid models will

meet the demands of a wider variety of surgery simulation applications.

 25

VII. BIBLIOGRAPHY

1. An index of numerous reconstructions based on the Visible Human Dataset can be found

at www.nlm.gov/research/visible/visible_human.html, .

2. Berkley, J., Oppenheimer, P., Weghorst, S, Berg, D., Raugi, G, Haynor, D., Ganter, M.,
Brooking, C., Turkiyyah, G. Creating Fast Finite Element Models from Medical Images.
in Medicine Meets Virtual Reality 2000,. 2000. Newport beach, CA.

3. Berkley, J., Weghorst, S., Gladstone, H., Raugi, G., Berg, D., Ganter, M., Banded Matrix
Approach to Finite Element Modeling for Soft Tissue Simulation. Virtual Reality, 1999.
4: p. 203-212.

4. Berg, D., Raugi, G, Gladstone, H., Berkley, J., Ganter, M., Turkiyyah, G. Virtual Reality
Simulators for Dermatologic Surgery Measuring Their Validity As A Teaching Tool. in
Medicine Meets Virtual Reality 2001. 2001. Newport Beach, CA.

5. Larrabee, W.F., Jr. and D. Sutton, A finite element model of skin deformation. II. An
experimental model of skin deformation. Laryngoscope, 1986. 96(4): p. 406-12.

6. Pieper, S., D. Laub, and J. Rosen, A finite element facial model for simulating plastic
surgery. Plast Reconstructive Surg, 1995. 96(5): p. 1100-1105.

7. Gourret, J., N. Thalmann, and D. Thalmann. Simulation of object and hand skin
deformation in a grasping task. in SIGGRAPH. 1989.

8. Chen, D. and D. Zeltzer. Pump it up: Computer animation of of biomechanically based
model of muscle using the finite element method. in SIGGRAPH. 1992.

9. Waters, K. and D. Terzolpolos, The computer synthesis of expressive faces. Philos. trans.
R. Soc. Lond., 1992. 335(1273): p. 87.

10. Keeve, G. and E. Girod. Craniofacial surgery simulation. in Proceedings of 4th
International Conference on Visualization in Biomedical Computing. 1996.

11. Cotin, S., et al., Geometric and physical representations for a simulator of hepatic
surgery. Stud Health Technol Inform, 1996. 29: p. 139-51.

12. Cotin, S., H. delingette, and N. Ayache, Efficient linera elastic models of soft tissue for
real-time surgery simulation, . 1998, INRIA, Institute national de Recherche en
Informatique et en Automatique.

13. Picinbono, G., et al. Anisotropic elasticity and force extrapolation to improve realism of
surgery simulation. in IEEE International Conference on Robotics and Automation.
2000. San Francisco.

14. Bro-Nielsen, M., Fast finite elements for surgery simulation. Stud Health Technol
Inform, 1997. 39: p. 395-400.

15. Hansen, K. and O. Larsen, Using region-of-interest based finite element modeling for
brain-surgery simulation. Lecture Notes in Computer Science, 1998. 1496: p. 305.

16. James, D. and D. Pai, A Unified treatment of Elastostatic and Rigid Contact Simulation
for Real Time Haptics. The Electronic Journal of Haptics Research (www.haptics-e.org),
2001.

 26

17. Sagar, M. and D. Bullivant. A Virtual Environment and Model of the Eye for Surgical
Simulation. in SIGGRAPH. 1996.

18. Zhuang, Y. and J. Canny. Haptic interaction with global deformations. in IEEE
International Conference on Robotics and Automation. 2000. San Francisco.

19. Basdogan, C. Real-Time Simulation of Dynamically Deformable Finite Element Models
Using Modal Analysis and Spectral Lanczos Decomposition Methods. in Medicine Meets
Virtual Reality. 2001. Newport Beach, CA.

20. Wu, X., Goktekin,T., Tendrick, F., Adaptive Nonlinear Finite Elements for Deformable
Body simulation Using Dynamic Progressive Meshes. Eurographics, 2001. 20(3).

21. Szekely, G., , vol. 9: 3, pp. 236-255, 2000., Virtual Reality-Based Simulation of
Endoscopic Surgery. Presence, 2000. 9(3): p. 236-255.

22. Cavusoglu, M.C., Tendrik, F. Multirate Simulation for High Fidelity Haptic Interaction
with Deformable Objects in Virtual Environments. in IEEE Intl. Conf. Robotics and
Automation. 2000.

23. Press, W.H., et al., Numerical Recipes in C. 2nd ed. 1992, Cambridge: Cambridge
University press.

24. Zienkiewicz, O.C. and R.L. Taylor, The Finite Element Method. 4th ed. Vol. 1. 1994,
London: McGraw-Hill Book Company.

25. Kato, H., Billinghurst M. Marker Tracking and HMD Calibration for a video-based
Augmented Reality Conferencing System. in 2nd International Workshop on Augmented
Reality (IWAR 99). 1999.

26. Billinghurst, M. and H. Kato, Real World Teleconferencing. Proceedings of CHI '99,
1999(May 19-20, Pittsburgh, PA USA).

27. Billinghurst, M. and H. Kato, Shared Space.
http://www.hitl.washington.edu/research/shared_space/download/, 1999.

28. Billinghurst, M., et al. Mixing Realities in Shared Space: An Augmented Reality Interface
for Collaborative Computing. in IEEE International Conference on Multimedia and Expo
(ICME2000). 2000.

29. Lim, C.T., et al., Object Reconstruction from Layered Data using Implicit Solid
Modelling. Journal of Manufacturing Systems special issue on Layered Manufacturing,
1997. 16(4): p. 260-272.

30. Brooking, C., Point repulsion in implicit solids. In-house publication, Department of
Mechanical Engineering, University of Washington, brooking@u.washington.edu., 1999.

31. Berkley, J., Determining soft tissue material properties for the purpose of finite element
modeling of the below kinee amputee residual limb., in Engineering. 1997, Northwestern
University: Chicago.

 27

 Entry Puncture
Point

Wound Exit
Point

Wound
Entry Point

Exit Puncture
Point

Figure 1. A graphical representation (side view) of a suture with four connecting points on
the wound and a knot. Assume the needle was inserted on the left side of the wound and
pulled through on the right.

 28

Step 1

If the applied needle force normal to the skin surface exceeds a prescribed
puncture force, the needle is allowed to pass through the skin surface. Rotation
of the needle cause the “entry puncture point” to slide along the axis of the
needle. The displacement at the entry puncture point, and resulting
deformation of the tissue, is determined by displacement of the needle.

Step 2 When the needle passes out of the wound, the displacement of the “wound exit
point” becomes confined to the needle. Rotation of the needle causes the
wound exit point to slide along the axis of the needle.

Step 3
The needle is released by the needle holder and then grabbed again from within
the wound.

Step 4
The needle is pulled completely through the tissue. As the needle travels
completely through the entry puncture point and though the wound exit point,
the confined displacements of each of these points are released from the
needle.

Step 5 The needle is pushed through the inside of the wound on the opposite side.
Rotation of the needle cause the “wound entry point” to slide along the axis of
the needle. Displacement of this point is confined to the needle.

Step 6
The needle must now be pushed out through the skin surface. If the applied
force normal to the skin surface exceeds a prescribed puncture force, the
needle is allowed to pass out through the skin surface. The “exit puncture
point” becomes confined to the needle along with the wound entry point.

Step 7 The needle is released and the grabbed again from outside the skin surface.

Step 8 The needle is pulled completely through the tissue. As the needle travels
through the wound entry point and through the exit puncture point, the
confined displacements of each of these points are released from the needle.

Step 9 A knot is tied and the suture is pulled tight closing the wound.

Table 1. The required modeling steps for the application of one suture to an existing
laceration or excision.

 29

 Portion of Equation 13 Number of
Computations

Comments

Step
1

]][[1−KC 27c2 Only multiply
with columns
pertaining to
non-zero rows
of CT.

Step
2

]][[1 TCCK − 27c2

Step
3

11][−− TCCK 18c3

Step
4

]][[1−KC 9cl Only multiply
with columns
pertaining to
non-zero rows
of f.

Step
5

]][[1 fCK − 3cl

Step
6

)]][()[(111
contact

T
contact dfCKCCKf −= −−− 9c2

 Total 18c3+63c2+12cl

Table 2. The table above describes the order in which equation 13 should be solved. c
refers to the number of contact points and l refers to the number of nonzero values in the
force vector. Instead of using K, Kvis from equation 8 could be used instead, but there will
be no performance increase. Brackets indicate that the enclosed portion has been solved in
a previous step. Additions and subtractions have been ignored when defining the number
of computations. It is assumed that each contact point is distributed over three unique
nodes. It is also assumed that the row numbers pertaining to nonzero rows in CT are
completely different than the row numbers pertaining to nonzero rows of f. Otherwise, the
number of computation could be reduced. The equations above assume a 3D problem.

 30

 Portion of Equation 14 Number of Computations
Step 1]][[contact

T fC 9c

Step 2]][[1
contact

T fCfKd −= − n(3c+l)

 Total 9c+ n(3c+l)
Table 3. The table above describes the order in which equation 14 should be solved. c
refers to the number of contact points, l refers to the number of nonzero values in the force
vector and n refers to the width/height of K. Instead of using K, Kvis from equation 8 could
be used instead and n would equal three times the number of visible nodes. Brackets
indicate that the enclosed portion has been solved in a previous step. Additions and
subtractions have been ignored when defining the number of computations. It is assumed
that each contact point is distributed over three unique nodes. The equations above
assume a 3D problem.

 31

Figure 2. A needle driver and tweezers are used to apply a suture. Contact takes place at
multiple points, which must be accounted for in simulation.

 32

Figure 3. Shows an application created by the authors for real-time FE modeling in
engineering analysis. The FE model is composed of tetrahedral elements and nodes that
mark the corners of each element. A reaction force is calculated at the contact point, which
is used for haptic feedback. The color plot is representative of the shear strain in the XY
direction.

 33

(a) (b)

Figure 4. a) Shows the Suturing Simulator in use within the Reach-In environment. b) The
author remotely views the skin surgery simulator through a head mounted display.
Remote viewing through augmented reality was accomplished by using the AR Tool Kit in
conjunction with remote viewing socket software developed by Jeff Berkley.

 34

Figure 5. Shows a hand model as three sutures are applied to close an excision.

 35

a b c

Figure 6. a) Shows the overlying mesh of a hand model with 863 nodes of which 624 nodes
lie on the surface. Displacements are determined for the visible nodes and an additional
100 non-visible nodes that correspond to surface elements in order to allow real time
stress/strain visualization. Greater element resolution exists at the wound to provide
greater accuracy at the region of interest. b) Shows the arm model with stress magnitude
color mapping. c) The red vector extending from the needle can be used to help the user
orient the needle perpendicular to the skin for proper needle insertion.

 36

	Real-Time Finite Element Modeling for Surgery Simulation: An Application to Virtual Suturing
	I. INTRODUCTION
	II. SUTURING IN SURGERY SIMULATION
	III. APPLICATIONS OF FE MODELING TO SURGERY SIMULATION
	IV. METHODS
	A. LU Decomposition
	B. Using the Inverse of the Stiffness Matrix
	C. Condensation
	D. Constraints

	V. SUTURING SIMULATION APPLICATION
	VI. DISCUSSION AND CONCLUSIONS
	VII. BIBLIOGRAPHY

