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Reacting against the inadequacy of traditional cognitive theory to
explain how learning occurs, many educational researchers have turned
to a socio-cultural, situated model of learning within which to conduct
their research. However, this model has, in its turn, failed to account for
some of what is observed when students work with complex, computer-
supported simulations of natural environments, referred to as “artificial
environments.” What is more, traditional cognitive theory has continued
to evolve and, considered together with systems theory and cognitive
neuroscience, is now in a better position to provide an adequate account
of learning. This article brings together three ideas to form a conceptual
framework for studying learning in artificial environments. These are the
ideas that cognition is embodied in physical activity, that this activity is
embedded in a learning environment, and that learning is the result of
adaptation of the learner to the environment and the environment to the
learner. The conceptual framework assumes that embodiment, embed-
dedness and adaptation are completely interdependent. These ideas are
illustrated from research on artificial environments, particularly those
that use virtual reality technologies.
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INTRODUCTION

Over the last two decades, educational researchers, who rely on cognitive
science to guide their work, have felt frustration at the intractability of many
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of the problems cognitive scientists were once expected to solve quickly and
easily. The most cited example is the failure of research and development in
artificial intelligence to produce effective and cost-effective systems that can
reason as people do (Dreyfus, 1979; Dreyfus & Dreyfus, 1985). The per-
ceived failing of computational, AI-like, views of cognition is mostly attrib-
uted to their being based on a model of thinking that assumes: 1) Knowledge
is represented in the mind by symbols that have a one-to-one mapping with
phenomena in the environment, 2) Cognition consists of operating on these
symbols by applying computer-like algorithms, 3) Cognitive activity is
therefore separated from the learner’s context; it goes on in the mind, not in
the environment, 4) Computed solutions to problems appear as behavior that
reduces discrepancies between a learner’s knowledge and actions, and “cor-
rect” ways to understand and act in the world.

Researchers have claimed, with justification, that human thinking does
not work like this (Streibel, 1991; Winograd & Flores, 1986). For example,
some argue that the cognitive system is closed to information and does not
allow direct mapping of external events to internal symbol systems
(Bickhard, 2000; Maturana & Varela, 1987). Others make the case that cog-
nitive activity is contextually situated, which is to say that its workings and
outcomes are determined by the external environment in which cognition
takes place (Brown, Collins & Duguid, 1989; Lave & Wenger, 1991) and
that thinking is uniquely influenced by a person’s activity in the environment
in which thinking occurs (Clark, 1997; Varela, Thompson & Rosch, 1991).
Still others claim that knowledge is constructed by the learner, not received
from a teacher, and that it is consequently not possible, nor even worthwhile,
to predict, and therefore prescribe, what and how a student will learn
(Bednar et al., 1992; Cunningham, 1992).

When educators turned away from a computational view of cognition as
their framework for research, there were a number of paths they could have
taken. The path chosen by the majority led away from the direct study of
cognitive processes towards examination of the context and culture within
which cognition takes place. This approach falls, somewhat loosely, under
the rubrics of “situated cognition” and “constructivism.” Another path, not
taken by the majority, was one that leads to a more rigorous examination of
learning processes. This path requires the study of interaction and mutual
adaptation of students and environments, considered to act like complex sys-
tems, and to explanations of cognition emerging from the neurosciences.
The assumptions here are different, namely that: 1) Students and the envi-
ronments in which they learn are much more complicated than we assumed
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when we developed the constrained, AI-like view of cognition. 2) To under-
stand learning requires that this complexity be faced head on, challenging us
to analyze and directly describe learning processes, regardless of their com-
plexity. 3) This analysis is potentially feasible given recent developments in
system theory, which is understood to include dynamics, robotics, models of
adaptation, and theories of self-organization and emergence. 4) Explanations
of learning and cognition can be reduced no further than those emerging from
the cognitive neurosciences which, after “the decade of the brain,” are com-
ing closer to accounting for some of the behaviors we observe in learners.

This article makes the case that it is necessary and feasible to take this
more challenging path, and to return to the direct study of learning with the
help of system theory and neuroscience. It begins with an examination of the
assumptions of constructivism as educators have understood it. Then, it
sketches an alternative framework based on the assumptions that learning
occurs when people adapt to their environment. To understand adaptation,
we must think of the learner as embedded in the learning environment and
physically active in it, so that cognition can be thought of as an embodied as
well as a cerebral activity. These arguments are illustrated from research on
learning in computer-support artificial environments, particularly from
research by our research group (Windschitl & Winn, 2000; Winn et al.,
2002) on a simulation of the salinity and tidal currents in Puget Sound,
Washington, called “Virtual Puget Sound.”

CONSTRUCTIVISM

“Constructivism” is the name commonly given to a cluster of ideologies
and practices that have largely replaced the computational view of cognition
and positivist methodology in educational research. Constructivism has its
own set of assumptions about thinking and learning that are quite different
from those that underlie the computational view. For educational technolo-
gists, these are laid out by Duffy and Jonassen (1992). Briefly stated, under-
standing is constructed by students, not received in messages simply to be
encoded, remembered and recalled. How knowledge is constructed and with
what results depends far more on a student’s history of adaptations to the
environment (Maturana & Varela, 1987) than on particular environmental
events. Therefore, learning is best explained in terms of the student’s evolv-
ing, contextualized understanding and is valued on that criterion, rather than
on the basis of traditional objective assessments. The notion that what stu-
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dents learn may be shaped in any significant way by preplanned instruc-
tional interventions is played down if not rejected out of hand. Finally, con-
structivists stress the social nature of learning. Knowledge is not construct-
ed in a vacuum, but through the negotiation of meaning within groups of
people.

There is nothing inherently wrong with any of these ideas. In fact, the
emphasis on the context in which learning takes place and on learning’s
social and constructed nature have drawn the attention of educational
researchers to topics that must be studied if we are to understand, more
broadly, what happens to students as they go through the education system.
These include students’ socio-economic status, their ethnicity, the extent of
family support for learning, the quality and preparation of their teachers, the
fabric of their schools, and so on. 

Yet the intense focus of recent educational research on these topics has
led to the neglect of more basic research that extends our understanding of
how students learn. What is more, much of the same cognitive research that
followed the computational model, against which constructivists reacted,
has evolved to a point where it can explain more complex aspects of learn-
ing, while retaining scientific rigor, and while remaining centrally focused
on basic cognition and learning. Here are three examples:

1. The closure of the central nervous system to information has been the
basis for arguments against the idea that the environment is directly mapped
onto symbolic representations in the mind, and against the idea that cogni-
tion consists of operating on these symbols algorithmically. This has led
some to question the nature of mental representation, even to doubt that rep-
resentation, as traditionally construed, occurs at all (Bickhard, 2000, pp. 38-
42; Rosch, 1999; Skarda & Freeman, 1987; Thelen & Smith, 1994). Yet peo-
ple have persuasively argued for the importance, indeed the necessity, of
representation to cognition. Without mental representation, how can we rea-
son in the absence of the objects and events that created memories for them
in the first place (Haugeland, 1991)? Without mental representation, how
can we develop and reason with abstractions that are essential for develop-
ing general skill in many disciplines, like mathematics (Steffe, 2000)? Our
idea of mental representation needs to be redefined, not rejected out of hand.
Cognitive neuroscience offers one alternative. Since learning affects the
ways in which neurons are connected and the mechanisms that create those
connections (Markowitsch, 2000), we might consider mental representation
to be networks of associations among neurons.
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2. Cognition is computational (Clark, 1997, pp. 153-160), though in dif-
ferent ways than those proposed by proponents of the “AI” view of cogni-
tion. Dietrich and Markman (2000) describe this newer view of computa-
tion. 

Computational accounts can explain the capacities of a system to exhibit
certain behaviors. They do not describe causal laws; rather they describe
what the system—student—is capable of doing when certain conditions
arise. The behavior that the system exhibits is analogous to the result of
computing a function whose parameters are inputs to the system. Marr’s
(1982) account of vision is a good example of how the behavior of a com-
plex system—human vision—can be explained through mathematical func-
tions, without needing to claim that the functions correspond to causal
mechanisms in the central nervous system. (It was the failure to understand
this distinction between functional and causal models that got us into to trou-
ble in the first place. Boden’s [1988] “Computer models of mind” is a case
in point.)

Computational accounts can describe how entire systems behave. They
do this by positing collections of interacting sub-functions that, together,
explain the system’s behavior. What is more, the system’s behavior can be
computed at different levels of granularity, to provide descriptions of single
processes or of their collective effect. The ability of computation, thus con-
ceived, to explain behavior systemically appears as early as in Von
Bertalanffy’s (1968) equations describing metabolism, which lie at the roots
of General System Theory, and continue today in current system-theoretic
accounts of cognition (Port & Van Gelder, 1995).

Computational accounts can interpret what a system is doing as it
changes from one state to another. They are grounded in the system’s behav-
ior, not in a mathematical model established a priori. The role of research is
to find or develop functions that describe changes in the system, not to find
systems that behave according to given functions. It is therefore important
to draw a distinction between “scientific AI” and “engineering AI” (Dietrich
and Markman, 2000). The former is used to model, descriptively, and to
interpret how systems behave. The latter attempts to use established AI tech-
niques, prescriptively, to solve problems.

3. The idea that cognitive activity depends on the context in which it
takes place has been used as an argument for the ineffectiveness of instruc-
tional strategies that are employed uniformly with different kinds of students
and in different contexts. Yet organisms and agents that are, in many
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respects, heterogeneous, change in predictable, though complex ways as a
result of interactions with their surroundings. Accepting the idea that cogni-
tive activity occurs in an environment is not grounds, therefore, for rejecting
causal models of adaptation as the basis for cognition. The required accounts
are certainly more complex than previous accounts. However, cognition can
be described using models of biological adaptation (Holland, 1992, 1995)
and dynamical system theory (Beer, 1995; Kulikowich & Young, 2001; Port
& Van Gelder, 1995) that are capable of handling the complexity of the inter-
actions between entire environments and complete cognitive systems. 

There appear, then, to be good reasons to reconsider the traditional views
of representation, computation and predictability as alternatives to construc-
tivist views of learning. Mental representations of the world are real and nec-
essary for cognition. Rather than “pictures in the head,” these might now be
thought of in terms of associative networks, which have a neurological basis
and which are activated by sensory inputs. The experiences that created
them in the first place are re-experienced, and restructured, as a consequence
of this activation, as Farrah (2000), for example, has demonstrated for men-
tal images. Also, cognition does operate through computation. This does not
mean that the brain works like a digital computer. But cognition works by
taking the state of the learner and the environment as “input,” performing
operations on it, and “outputting” the result as behavior. Finally, situating
learning in a context does not mean that there is no regularity in the process-
es or outcomes of learning. Techniques exist that allow us to describe the
dynamic interactions of two complex systems - student and environment - as
each changes the other. 

The next section examines ideas that have, at one time or another, been
used to challenge the centrality of cognitive science to educational research
and practice. The notion that cognition is “embodied” and “embedded” has,
rightly, been used to challenge the traditional separation among brain, body
and world. Yet careful examination of these ideas does not force us to con-
clude that representational and computational theories of cognition should
be rejected in favor of predominantly socio-cultural ones. Acceptance of
embodiment and embeddedness leads, in turn, to the idea that learning is
adaptation to an environment, where “adaptation” retains a large measure of
its biological sense, as developed, for example, in the theories of Darwin.
Taken together, the three concepts, embodiment, embeddedness and adapta-
tion, form a viable integrated theoretical framework within which to study
learning in artificial environments.
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AN ALTERNATIVE FRAMEWORK FOR DESCRIBING 
LEARNING IN ARTIFICIAL ENVIRONMENTS

Embodied and Embedded Cognition
Once we start to think of cognition as the interaction between a person

and their environment, it is necessary to consider how that interaction
occurs. This, in turn, requires the consideration of how our physical bodies
serve to externalize the activities of our physical brains in order to connect
cognitive activity to the environment. This physical dimension of cognition
is referred to as “embodiment.” Once this direct connection between cogni-
tive action and the environment is established, we must acknowledge that
cognitive activity is far more closely coupled to the environment than many
have hitherto acknowledged. This interdependence of cognition and envi-
ronment is referred to as “embeddedness.” It is clear that the embodiment of
cognition in physical action and the embeddedness of cognition in the envi-
ronment are closely connected. In this section we examine what this implies
for learning in artificial environments.

The role of our bodies in learning
To say that cognition is embodied is to say that it involves our entire bod-

ies, not just our brains. We can think of cognition as being embodied in three
ways. First, somewhat trivially, the brain is an organ like any other in our
body. Though complex, it does not possess magical or mystical powers
(Pinker, 1997, p. 64). We understand something about how it develops and
works. We do not yet understand enough to paint a complete picture of cog-
nition using its palette. However, we do know enough to assert that cogni-
tive neuroscience is important for educators to study, both as a source of
explanations about what happens to students as they learn, and as a source
of prescriptions for instruction (Berninger & Richards, 2002), although the
latter are, for now, commonly confined to clinical cases.

Second, we must consider how cognition operates within constraints
imposed by our physiology. The bandwidth of the data we can detect in the
environment is limited. We cannot see beyond infrared and ultraviolet wave-
lengths in the electromagnetic spectrum. We cannot hear sounds below 20
hz. or above 20,000 hz. Our natural view of the world is therefore consider-
ably limited. Also, we experience the world at particular scales in time and
space. Sparrows are small, elephants are large. Meteorites move quickly,
glaciers slowly. We can use technology to reduce the limits imposed by our
sensory bandwidth. We can show a bat’s echolocation as a sonogram. Or we
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can use animation to show the movement of a glacier by compressing time
to, say, 50 years per second. However, we can never really know the world
as a bat does (Nagel, 1974). Nor can we understand the advance and retreat
of ice sheets by watching them in real time. Artificial environments can use
computer technology to create metaphorical representations in order to bring
to students concepts and principles that normally lie outside the reach of
direct experience.

Research on artificial environments has had to confront this issue head
on. In one sense, the limitations imposed by our physiology offer an advan-
tage. They force students to deal with the world in ways “real” scientists
must—by making inferences from indirect, instrumented observations of
phenomena (Winn & Windschitl, 2000). Computer-created environments
can act as transducers of data that lie beyond direct sensory detection.
Students can use virtual instruments to measure environmental phenomena.
They can also experience phenomena through metaphorical visualizations.
But, using metaphors, one runs the risk of misinterpretation. Incomplete
understanding of readouts from virtual instruments, or of the meaning of
metaphors generally, can lead to misconceptions. For example, Winn et al.
(2001) used vectors to show the speed and direction of currents in a simula-
tion of selected aspects of physical oceanography. Longer arrows showed
that the current was faster. (Figure 1 shows this environment, “Virtual Puget
Sound.”) To solve a problem, students had to learn that water speeds up
when it moves through narrow channels. However, one student concluded
that currents were slower in narrow passages. For him, the longer arrows
made the passages look more clogged. A clogged highway slows traffic
down. So water slows down in narrow passages. The metaphor meant the
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to the north west, looking up the main channel towards Admiralty Inlet, Port Townsend and the
Straits of Juan de Fuca. See Color Plate I at back of issue.



opposite of what it was intended to describe for that student. 
Another case shows a problem with metaphorically changing temporal

scale. Jackson (2000) described a study in which artificial environment sim-
ulated global warming over a period of 2000 years. Middle school students
could control the amount of greenhouse gases in the atmosphere by reduc-
ing emissions from vehicles and factories, and by increasing the amount of
green plant material available to absorb CO2. In an attempt to connect glob-
al warming to destruction of the rain forest, Jackson used the number of trees
as a metaphor for this process. As students changed the amount of green
plant material, trees appeared and disappeared in the environment. Students
made measurements, traveled into the future and made more measurements,
returned to the present to make changes to the environment, including plant-
ing or harvesting trees, and visited the future again to see what effects their
changes had made. Several students concluded that global warming was not
a problem: All we have to do is plant more trees! Time travel was almost
instantaneous and the time scale therefore much distorted. As a result, plant-
ing trees had an immediate effect on global warming. The tree metaphor
failed to convey the fact that restoring the environment takes a long time,
and this simplification led to a misconception.

It is clear that having to invent ways of showing phenomena that have no
natural appearance for humans can be problematic. For example, there are
no hard-and-fast rules for deciding what salinity looks like, nor, therefore,
for interpreting symbols chosen to represent salinity. Where visual
metaphors do exist, they tend to be conventions arising from within the sci-
entific community, as in the case of arrows showing current vectors, which
may not be intuitive to non-experts. More generally, there are conventions
for creating and interpreting graphics that are learned as a person becomes
visually literate in their culture (Tversky, 2001; Tversky, Kugelmas &
Winter, 1991), such as reading flow diagrams from left to right across the
page. However, these are mostly not specific enough to permit accurate
interpretation of metaphors intended to convey information about particular
phenomena. In most cases, this means that, to be safe, metaphors can be
explicitly taught to students before entering learning environments where
they are used.

On the whole, though, good metaphors selected to overcome the limits of
direct sensory experience can work very well in artifical environments, as in
Dede at al’s. (1997) environment that describes Newton’s laws, and in the
“Virtual Puget Sound” simulation of physical oceanography (Fruland, 2002;
Winn et al., 2001; Winn & Windschitl, 2002). Most of the students working
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with Virtual Puget Sound learn how water moves in the ocean, from inter-
acting with metaphors showing the behavior of tides and currents. To illus-
trate, an important characteristic of Puget Sound is that more saline, denser
water enters from the north. As it moves south, it is diluted with fresh water
entering the Sound from rivers and, becoming less dense, rises. Water there-
fore leaves Puget Sound at the surface, creating a vertical circulation pattern
in addition to the more familiar horizontal one. Figure 2 shows drawings
made by a 14-year-old before and after visiting Virtual Puget Sound. It is
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FIGURE 2 Drawings showing vertical circulation of water in Puget Sound made by a 14-year-
old, before and after visiting Virtual Puget Sound. (Note the vertical exaggeration in the dia-
gram provided for the student to draw on.) The top two drawings show the student’s initial con-
ception of water movement on a rising and a falling tide. The bottom drawing, made after vis-
iting Virtual Puget Sound, clearly shows the vertical circulation pattern.



clear that the student, like most others, understood what the metaphors,
showing this circulation pattern, meant, and that he learned how the circula-
tion process works. 

The third way in which cognition can be thought of as embodied is when
we use our bodies to solve problems. Our physical behavior often external-
izes our thinking and extends cognition beyond our brain. Counting on our
fingers is an obvious example, as is using gestures as we tell stories (Kita,
Danziger & Stolz, 2001). In an unpublished study, a dyslexic sixth-grader,
who visited Virtual Puget Sound, found it difficult to explain in words the
vertical circulation pattern he had just learned about. He described it perfect-
ly using his hands and arms in a circular gesture. (Roth [2001] has reviewed
research on how students use gestures as they learn.) Going further, Varela et
al. (1991) make the case that all of cognition is “enactive.” They argue that
the way we organize ideas directly reflects how we act in the world. From
there, Varela et al. construct a view of cognition that is based, not on the idea
that the mind is a mirror of the environment, but that cognition consists of the
constant, reciprocal, interaction between the mind and the environment. 

Bodily activity is often essential to understanding what is going on in an
artificial environment. The ability to move about makes it easier to remem-
ber three-dimensional spatial layouts (Arthur, Hancock & Telke, 1996).
Students who frequently change their positions and points of view learned
more about how water moves in Virtual Puget Sound than students who do
not (Winn & Windschitl, 2002). A most interesting case is Gabert’s (2001)
study of high school Chemistry students learning about changes of the states
of matter. Her immersive environment consisted of three intersecting sur-
faces—a three-dimensional graph of temperature, volume and pressure. At
various places, the students could observe processes at the molecular level,
for example where solids changed to liquids and liquids to gases. The scale
was such that the graph was very large relative to the students, towering
above them and reaching far into the distance. As a consequence, the stu-
dents had to “fly” around the environment in order to visit these locations
and to observe changes of state at the molecular level. The actual position of
the student’s body in three-dimensional space was therefore meaningful. To
observe what happened when temperature increased, the student had to fly
up to a higher point in the environment, rising with the temperature. To
observe the result of an increase in pressure, the student had to move to the
right. It was as if the student’s body became a data point on the graph—a
cursor moving around in three dimensions, marking points where important
processes occurred.
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Connecting brain and body to the environment
It is largely through physical action that cognitive activity is connected to

the environment. Yet, while all activity occurs in a context, to say cognition
is “embedded” in an environment is to say far more than that it is contextu-
alized. In what follows next, a distinction is made between the environment
as a whole and the environment that the student knows about. The latter
exists for the student either from direct perception (limited, as we have seen,
by the constraints of the human sensory apparatus), or through the acquisi-
tion of knowledge about it in ways other than direct experience. We then
look at the means by which students become embedded in an environment.
These involve either natural proclivities, or deliberate affective and cogni-
tive strategies that are built into the environment. 

Environment and “Umwelt” 
A central premise of the constructivist position is that all knowledge is

constructed by the student and that every student’s understanding of the
environment is idiosyncratic. It follows, the argument goes, that there can be
no objective, fixed standard against which to assess what a person knows.
The premise is not problematic. The conclusion is. It leans dangerously
towards solipsism, as Maturana and Varela (1987) point out. Of course, no-
one’s knowledge of the world can be complete, and therefore everyone
knows the world in a somewhat different way. But these differences in
knowledge arise because everyone has a different set of experiences, not
because there is no objective reality.

Following Roth (1999) and others, the word “Umwelt” is used to refer to
the environment as seen and understood, idiosyncratically, by different indi-
viduals. The first use of the word “Umwelt” (German for “environment”) in
this way is attributed to the biologist Von Uexküll (1934), who described
what the world might look like if you were a scallop, or a bee, or some other
creature. His somewhat whimsical drawings, reproduced in Clark (1997, pp.
26-28), show that each creature’s Umwelt is quite different from every other
creature’s. A student’s Umwelt is the environment as the student sees and
knows it—a limited view of the real world, ever changing as the student
explores it and comes to understand it. 

There are three further points to make. First, the uniqueness and variabil-
ity of Umwelt are not the result of limited sensory capacity, which we saw
above is a physiological constraint. Rather, they arise from differences in
each individual’s experience of the environment. Put another way, the
embodiment of sensory perception varies across species; normal variability
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in Umwelten is a difference among individuals. 
Second, differences among Umwelten do not just reside in knowledge

and internal representations. Individuals see their Umwelt differently. The
proverbial Inuit can actually see differences in types of snow. Goldstone et
al. (2000) cite evidence for this kind of heightened perceptual discrimination
in expert radiologists, beer tasters and chick sexers. There is also evidence
that the exposure to environmental stimuli that leads to heightened sensory
sensitivity brings about measurable changes in the auditory (Weinberger,
1993) and visual (Logothetis, Pauls & Poggio, 1995) cortex. 

Third, an argument against prescriptive approaches to learning and teach-
ing has been that we cannot predict the behavior of natural environments,
because they are too complex. Nor can we predict the behavior of a student’s
Umwelt, because it is too idiosyncratic. In contrast, every function and fea-
ture of an artificial environment is known. An artificial environment is com-
pletely predictable, because we have made it. How it will respond to every
kind of input that it is programmed to accept is predictable. Also, we can
control precisely what a learning environment reveals about itself, as when
we turn off gravity to illustrate aspects of Newton’s laws (Dede et al., 1997),
or turn on ocean currents to show water movement in Virtual Puget Sound.
This makes it easier to predict, though not infallibly so, how students will
adapt to artificial environments as they struggle to understand the concepts
and principles they embody.

When we say cognitive activity is embedded, we therefore mean that the
student interacts with an Umwelt, which changes with experience, and that
the Umwelt provides an idiosyncratic and incomplete view of an environ-
ment, which may or may reveal or conceal information about itself.
Embeddedness therefore depends on the nature of the interaction of the stu-
dent with the Umwelt and how well the Umwelt reflects properties of the
environment. We turn to these matters next.

Coupling students to the environment 
Some recent thinking suggests that it is better to consider students to be

tightly coupled to the environment rather than embedded in it. Being embed-
ded suggests the student is passive, carried along as the environment
changes. Successful students are anything but passive. The idea of “cou-
pling” (Maturana & Varela, 1987; Reyes & Zarama, 1998; Roth, 1999)
describes mutually influencing dynamic interaction between learners and
the environment. Clark’s “continuous reciprocal causation” (1997, p. 163)
likewise describes an unbroken process where the actions of learners and of
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the environment, and the consequences of these actions, are a two-way
street. Clark (1997, p. 171-2) gives as an example trying to catch a hamster
with a pair of tongs. Each move the animal makes instantly determines how
you wield the tongs. And how you wield the tongs instantly determines how
the animal will behave. Cause and effect are not clearly distinguishable. The
two systems are tightly coupled. Winn and Windschitl (2001) have argued
that when interactions like these occur, students can learn in artificial envi-
ronments in the same ways that they learn in the natural world – intuitively,
constructively and actively.

Students can become tightly coupled with artificial environments as a
result of affective and cognitive factors. Affect is exploited by creators of
computer games to keep students engaged with their products for extended
periods. Cognitive strategies for engaging students in learning environments
are aimed at bringing about conceptual change, usually through problem-
solving or discovery learning. We examine each of these in turn.

Affective strategies
The experience of being coupled to an artificial environment is called

“presence” (Zeltzer, 1991). Presence is the belief that you are “in” the arti-
ficial environment, not in the laboratory or classroom interacting with a
computer. Typically, during a visit to an artificial environment, attention is
divided between the environment created at the computer interface, be it a
computer screen of virtual reality helmet, and the environment outside,
which might be noisy, or contain someone giving you instructions about
what to do, or be distracting in other ways. 

Presence varies with the extent to which attention is divided between the
artificial and the real environment (Witmer & Singer, 1998). A high level of
presence requires complete attention to the artificial environment, produces
an almost complete immunity from distraction and allows total engagement
with the artificial environment. Witmer and Singer also say that presence
can be improved by a high level of enjoyment and by being immersed in the
environment. This last condition is met best when a student wears a virtual
reality helmet with a wide field of view and when head movements are
tracked in real time, allowing the student to look around in the artificial envi-
ronment in the same way as in the natural world. Lin et al. (2002) have
shown that increasing the field of view during immersion in an artificial
environment improves presence and enjoyment—but also simulator sick-
ness. Presence can heighten both pleasant and unpleasant experiences.

Hedden’s (1998) study of why people can spend uninterrupted hours
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totally engrossed in a computer game offers some insights into affective
coupling with artificial environments, by heightening presence through the
direction of attention. Hedden draws on Lepper and Malone’s theory of
motivation (Malone, 1980; Malone & Lepper, 1987; Lepper & Chabay,
1985) and proposes that challenge, curiosity and fantasy act to focus atten-
tion on games, thereby increasing presence. Challenge is greatest when the
goal is clear, initial uncertainty is high, and the activities necessary to attain
the goal are of intermediate difficulty. Curiosity is aroused when “environ-
ments are neither too complex nor too simple with respect to the person’s
existing knowledge” (Malone, 1980, cited in Hedden, 1998, p. 36).
Environments therefore hold attention if they make students curious to com-
plete understanding they have only partially acquired. Fantasy arises when
the student can imagine a number of possible outcomes from the activity. As
the activity progresses, the possibilities are eliminated one by one until just
remains—the solution to the problem.

When the conditions required to optimize challenge, curiosity and fanta-
sy are met in an environment, Hedden (1998) proposes that students enter
what Csikszentmihalyi (1988, 1990) has called a state of “flow.” Flow is
characterized by a high level of enjoyment, total engagement in the task, a
loss of awareness of the passage of time, a resistance to distraction, and a
pleasant sense of fatigue when finished. Obviously, these conditions corre-
spond to characteristics of presence identified earlier—engagement, immer-
sion and enjoyment.

Building artificial environments that draw attention exclusively to them-
selves, and even induce flow, can have extremely powerful effects. Hoffman
et al. (2000) placed children into an immersive game while they were under-
going wound care for severe burns. The children were completely drawn
into the artificial environment, reporting high levels of presence. They also
paid so little attention to what was happening to them in the real world that
they experienced remarkably less pain. Carlin, Hoffman & Weghorst (1997)
described an effective treatment for arachnophobia using an artificial envi-
ronment. The patient’s presence in the environment was so high, and the vir-
tual spider so believable, that a variation of aversion therapy was complete-
ly successful. 

Work with students of all ages has shown that presence consistently pre-
dicts the amount students learn and that reduced presence, caused by dis-
traction or discomfort, impedes learning (Winn et al, 2001; Winn et al.,
2002). These studies have also consistently shown positive correlations
between presence and enjoyment. Hedden’s predictions seem therefore to
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apply to immersive artificial environments as well as to games. This is born
out by observation of students in these studies, most often younger ones,
who become completely engaged in an artificial environment. They become
isolated from all external distraction. They perform physical actions that are
appropriate to the artificial rather than the real world, to the extent that care
has to be taken that they do not hurt themselves. They are bewildered when
objects in the artificial environment do not act as they would in the real
world—when they do not fall when dropped, for example.

Cognitive strategies
The cognitive strategies that couple students to artificial environments

are best illustrated from studies of conceptual change. Students bring a
whole host of assumptions about how the world works to their activities in
artificial environments. Students visiting Virtual Puget Sound, for example,
have started out believing that there are no tides in Puget Sound because
there are none in Lake Washington—a completely landlocked boy of water;
that the water in Puget Sound is saltier than the open ocean, because evapo-
ration in a relatively small body of water will concentrate the salt more
quickly; that objects released to float in the water will eventually return to
where they started from. These are common misconceptions. The purpose of
artificial environments is to persuade the students to reject such misconcep-
tions and accept scientifically accurate conceptions in their place.

Long-held misconceptions are notoriously difficult to change (Chinn &
Brewer, 1993). An effective strategy for doing do, which draws on a long
empirical history (Posner et al., 1982), is proposed by Windschitl and André
(1998). The basic idea is to have students find and confront compelling evi-
dence that can neither be predicted from nor explained by their current con-
ceptions. To be accepted in place of their current conceptions, the evidence
for the new conception must meet a number of criteria. The new evidence
must be understandable, otherwise it may simply be learned by rote. It must
fit within the student’s epistemological stance towards the phenomenon is
question—as well as being understood, it must be believed. It must be fruit-
ful and allow the student to solve this and other problems. It must be acquired
through interaction with the environment—the student must actively discov-
er it, test it and apply it without too much direction from someone else.

It is clear that these strategies for encouraging conceptual change are
somewhat similar to those used by game designers. The scenarios within
which students visiting Virtual Puget Sound solve problems are designed to
be optimally challenging and to arouse curiosity—though not to encourage
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fantasy. In one, students are told that a non-native species of fish has been
caught in Puget Sound. Should it become established, it will destroy the
salmon fishery. Their job is to find its lair, given that it prefers certain levels
of salinity and certain current speed. In another, students have to recommend
a site for a new sewage treatment plant that will discharge treated sewage
into the Sound. They must determine where to put the end of the discharge
pipe, select its location and its depth, so that the sewage will be quickly dis-
persed and will leave the Sound as rapidly as possible.

Studies using Virtual Puget Sound have shown that the extent of concep-
tual change is greater when engagement of the student in the environment is
high. Reported presence predicts conceptual change, measured by gain
scores (Winn et al., 2001), and when posttest scores are regressed onto pres-
ence scores (Winn et al., 2002). This second study also showed that students
who were immersed in the environment, using virtual reality technology,
reported more presence than those who worked with an equivalent environ-
ment on the desktop, and that immersed students also learned more than
non-immersed students about water movement, a dynamical three dimen-
sional process. These findings suggest that immersion and presence, which
couple students more tightly to the learning environment, support cognitive
processes that lead to conceptual change. 

LEARNING AS DYNAMIC ADAPTATION

The changes that occur to a student, and to the environment to which the
student is closely coupled through reciprocal interaction, can best be
explained by mechanisms of adaptation. Adaptation of a species to an envi-
ronment, over tens of thousands of years, is explained by theories of evolu-
tion. Adaptation of an individual to an environment, over a lifetime, is
accounted for by theories of physical, cognitive and social development.
Adaptation of an individual to an environment in the short term—in a
course, a lesson or a visit to an artificial environment—can be explained, in
part, by theories of conceptual change that we looked at earlier, and, more
completely, by accounts that allow us to capture something of the complex-
ity of student-environment interactions. In this section, we look more close-
ly at how this last kind of adaptation to learning environments might occur.
We examine both the nature of the changes that adaptation leads to and pos-
sible mechanisms for those changes.
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What changes with adaptation?
Earlier, we saw that exposure to an environment can lead to physical

changes in the brain, resulting in heightened perceptual sensitivity, which
leads a person to actually see things differently in the environment. The Inuit
really sees different types of snow. The professional beer taster really tastes
differences between kinds of beer. It seems reasonable, then, that a basic
change that occurs with adaptation is a greater clarity with which students
make distinctions among objects and phenomena in the environment. This is
not simply to say that a student distinguishes among more things, although
this certainly occurs. Rather, the student makes distinctions with more cer-
tainty.

Reyes & Zarama (1998) put forward an empirically-supported theory of
learning, based on system-theoretic principles, in which they describe learn-
ing as a process for “embodying distinctions.” The theory describes four
steps. 1) “Declaring a break.” An unexpected perturbation in the environ-
ment disrupts the flow of reciprocal action that couples the student and the
environment. The student might notice something untoward or new that can-
not be accounted for by current understanding, which interrupts the activity.
Observing visitors to Virtual Puget Sound has provided many examples of
this, as, for instance, when a student notices for the first time a current below
the surface moving in the opposite direction to the surface current. 2)
“Drawing a distinction.” The student distinguishes the new phenomenon
from those that are familiar. Rather than just currents, the student now
understands that there are currents that move in one direction and others, at
different depths, that move in other directions. The concept “current” has
been divided into distinct categories. 3) “Grounding the distinction.” The
new distinction must be compatible with other concepts and principles that
the student knows. The student must believe it to be reasonable that currents
can move in different directions at different depths. If, for some compelling
reason, the student has a deeply-rooted belief that water moves homoge-
neously, regardless of its depth, then the new distinction will simply be
memorized (for the test, maybe), but not believed or understood. 4)
“Embodying the distinction.” For learning to occur, the new distinction must
be used fruitfully. Thus, if the student can use the distinction between cur-
rents moving in one direction and those moving in another direction to solve
a problem, then learning is more likely to take place. Winn and Windschitl
(2002) have shown that students who discover and apply new distinctions
while visiting Virtual Puget Sound (here called “principles” rather than “dis-
tinctions”) will be more successful at solving the problem of where to find
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the lair of a predatory fish.
The explanation of learning that Reyes and Zarama propose obviously

contains features found in other learning theories. Making distinctions is not
unlike Gagné et al’s (1988) long-standing “discrimination learning”, a
process of learning to tell one thing from another that is a prerequisite for
learning concepts and for solving problems. Nor is their four-step process
that unlike Posner et al’s (1982) or Windschitl & André’s (1998) accounts of
conceptual change, which require that a new conception be understandable,
compatible with currently-held beliefs, and fruitful in application. However,
their particular view of learning has two advantages. First, it allows, indeed
encourages, consideration of how an entire student-environment system co-
adapts, rather than focusing on a narrow cluster of phenomena and concepts
isolated in the student’s brain. In proposing distinction-drawing as the basic
mechanism for learning, the scope of what influences learning is not con-
strained. Students may make distinctions between a new conception and any
conception they already hold. In practice, the distinctions are usually among
ideas that are conceptually close. But there is nothing to stop a student dis-
tinguishing among the new concept and any ideas in the cognitive system,
which can explain the idiosyncratic interpretations of environments and
solutions to problems that are frequently observed in students visiting artifi-
cial environments. Often, indeed, the distinctions we make, “tell us more
about ourselves than about the world we are describing,” (Reyes & Zarama,
1998, p. 23).

Second, Reyes’ and Zarama’s view of learning parallels neurological
accounts. If thoughts are represented in the brain as networks of neurons,
defined principally by the pattern and strength of connections among them
(Markowitsch, 2000), then the brain is wired to make distinctions. The dif-
ferences among neural networks can be computed from the differences
among the strengths of individual connections. As the strengths change, the
differences become more or less marked and the clarity of distinctions
evolves.

Mechanisms for adaptation
To view learning as adaptation to an environment is to bring to it the bio-

logical flavor of evolutionary and developmental theories. From a biologi-
cal perspective, adaptation results from the interaction of two kinds of influ-
ence: Environmental pressure, and genetic predisposition to change. Recent
research has shown that people are not born genetically “wired” so that their
development runs its course like a computer program. Rather, their genetic

ARTIFICIAL ENVIRONMENTS 19



make-up predisposes them to develop in particular ways should contact with
the environment trigger particular genetic programs (Neville & Bavelier,
2000; Johnson, 2000). So far, we have looked mostly at the kinds of inter-
actions with the environment that can bring about these changes. We now
look to conditions within the learner (the “genetic” part) for mechanisms
that drive adaptation.

We have seen that tight coupling between a student and a learning envi-
ronment leads to changes in both the student and the environment.
Adaptation is mutual. Since our focus is on computer-created learning envi-
ronments, we need to find mechanisms that apply equally to biological and
machine adaptation. Such mechanisms are proposed by Holland (1992,
1995).

Holland has described “genetic algorithms” for adaptation to environ-
ments by humans and by machines. Genetic algorithms are prescriptions for
procedures that execute when a certain event ensues from interaction with
the environment. As such, they resemble “if-then rules,” as rules are defined
in other theories of learning (see, for example, Scandura, 1983). Yet genetic
algorithms have two properties that distinguish them from rules traditional-
ly construed. First, they are more like competing hypotheses than rules,
meaning that they thrive or fail as a result of their success in guiding fruit-
ful interactions with the environment. Second, their success or failure, like
that of living organisms, depends on their own ability to adapt. So not only
does a student’s knowledge change through adaptation to the environment.
The rules, or procedures, that specify how the student interacts with the
environment in the first place also change through adaptation, based on their
success at producing fruitful behavior.

Holland (1995, 53-80) describes a number of processes by means of
which these rules are created, get abandoned and change over time. “Credit
assignment” changes the perceived value of rules depending on the consis-
tency of their success at predicting how the environment behaves. Rules that
predict consistently well survive. Those that do not die out. Winn and
Windschitl (2002) we have documented cases of visitors to Virtual Puget
Sound explicitly rejecting rules that fail to predict observations consistently.
One student started out believing that water in Puget Sound was more saline
than that in the open ocean, because evaporation in a relatively small body
of water would concentrate the salt more. (In fact, water in Puget Sound is
less saline because more fresh water flows into it from rivers than is lost
through evaporation.) When application of this rule failed to solve a prob-
lem that required prediction of salinity, the student stated, “I’ll have to
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change my theory here,” discovered, by experimenting, the correct principle,
and proceeded to solve the problem.

“Rule discovery” creates new rules ex nihilo. More correctly, the rules are
new to the student and govern only the Umwelt. They are already pro-
grammed into the simulation that drives the environment, remaining for the
student to discover. Many students do not know that the water in Puget
Sound gets saltier as it gets deeper. Yet this rule cannot be ignored if you use
the virtual salinity meter at different depths—something the student must do
in order to solve a number of problems. Typically (Fruland, 2002; Winn et
al., 2001), students comment, often with surprise, on this discovery and use
it from then on to help solve problems.

Finally, “crossover,” in genetics, is a process through which pieces of two
sets of genetic material are combined to produce offspring with new proper-
ties. In Holland’s view of adaptation, crossover likewise combines parts of
two rules to produce a new one. The pieces to combine may be chosen ran-
domly, as in the BEAGLE expert system (Forsyth, 1984, pp. 162-165), in
which case the new rule thrives or dies depending solely on how well it pre-
dicts events in the environment, through credit assignment, described above.
Or the pieces may be chosen in some principled way (Holland, 1995, pp. 65-
69), increasing the new rule’s chances of survival. In either case, the rules
evolve. One student working in Virtual Puget Sound (Winn & Windschitl,
2002) knew that tides are cyclical (one rule) and that the speed of currents
varies over the tidal cycle (another rule). However, she did not know when
in the tidal cycle the currents were the fastest. From her think-aloud proto-
col, it was determined that she reasoned the current would be slowest at high
and low tide, because at those points the current would slow down and
change direction. Therefore, she reasoned, current would be fastest between
high and low tide. She then measured current speed midway between high
and low tide, and then repeated the measurement one hour earlier and one
hour later in the cycle. The second two measurements showed slower cur-
rent. She then combined the two rules into one, and from then on proceeded
to look for the fastest water only at times half way between high and low
tide. In this case, the combination of rules was principled—the student rea-
soned through the alternatives to arrive at a conclusion. In other cases, stu-
dents stumbled onto the same principle by chance, in a sense randomly com-
bining the two rules, yet nonetheless proceeding to use the new rule effec-
tively.

Holland’s mechanisms for adaptation are not the only ones that can
explain learning by interacting with an environment. However, they suit our
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purpose. They apply equally well to adaptation by people and by machines,
a necessary feature for our work with artificial environments. Also, genetic
algorithms allow adaptation to be described quantitatively. This permits data
to be described in ways that can be submitted to numerical analysis, can be
tested in simulations, and can be displayed, for interpretation, in a number
of useful ways. In short, they meet several of the criteria for the scientific
rigor that needs to exist in educational research.

SUMMARY AND CONCLUSION

Putting all of this together, we arrive at a description of learning that is
quite different from accounts given by traditional cognitive psychology and
by constructivism. The new account is grounded on a framework that inte-
grates three concepts, embodiment, embeddedness and adaptation. The
framework brings together recent research and theory that extend the
purview of cognitive activity from the brain, through the body, to the envi-
ronment itself. Learning is considered to arise from the reciprocal interac-
tion between external, embodied, activity and internal, cerebral, activity, the
whole being embedded in the environment in which it occurs. Learning is no
longer confined to what goes on in the brain. Indeed, we may ask, like Clark
(1997, p. 213), “Where does the mind stop and the rest of the world begin?”
One answer to this question is to assume, like Beer (1995), that sometimes
the coupling between a person and the environment is so tight that it is more
convenient to think of person and environment as one evolving system
rather than two interacting ones. In this view, learning can be thought of as
self-organization by the system, and new knowledge as an emergent proper-
ty of that self-organizing activity. In any event, embodiment, embeddedness
and adaptation can no longer be considered to be independent of each other.

The framework has the added advantage of accommodating some recent
research in cognitive neuroscience. While we are still a long way from being
able to explain cognition is terms of brain structures and processes, it is
nonetheless important to note the convergence of evidence from the neuro-
sciences and the learning sciences toward explanations of how some learn-
ing takes place. We have also noted commonalities among system-theoretic
and neuroscientific views of cognition. For example, both include the possi-
bility that complexity can arise from the application of relatively simple
rules, that cognition can be explained in terms of the collaborative activity
of simple units, as when, for example, a series of new distinctions can lead
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a student to understand whole environments, such as Virtual Puget Sound.
The framework also allows us to rethink some of the details that have

been controversial in recent educational literature. For example, mental rep-
resentation and computation are restored to central roles in learning and
cognition. However, their natures are seen somewhat differently than before.
Representation is no longer considered to consist of mapping objects and
phenomena in the environment onto mental symbols. Rather, representation
becomes a dynamic, environmentally-triggered activity, in which mental
structures are activated by external or internal events, recreating some of the
experience that was felt when the event was actively perceived for the first
time. Computation is now viewed in terms of the brain’s ability, first, to
draw distinctions, and then to extend these distinctions in ways that permit
higher cognitive operations.

The coupling of student and environment can be tightened affectively by
increasing the sense of presence the student feels in the environment.
Presence emerges naturally, in most cases, if the student is immersed in the
environment using virtual reality technology. However, research on motiva-
tion to play computer games suggests many other strategies expressly
designed to keep students’ attention directed towards the learning environ-
ment and away from the world outside. Also, cognitive strategies for cou-
pling student and environment require students to be actively engaged in
changing old conceptions into new ones as their current conceptions are
challenged by unexpected events in the environment.

The environment should be thought of in two ways. The Umwelt is the
environment that the student knows, constrained by sensory limitations. It is
changed both through direct experience and through interaction with
metaphorical representations of phenomena not accessible to the senses,
which lead to new distinctions among concepts and principles. Beyond that
lies an environment that has properties, separate from knowledge construct-
ed about it, that obey the laws of nature in predictable, objectively verifiable
ways. This means that adaptation to the environment can lead to conceptions
that can be considered right or wrong. In the case of artificial environments,
whose behaviors are programmed by us and are therefore completely
known, this also means that a considerable measure of control can be placed
on how the student-environment interaction proceeds. Beyond scaffolding
(Linn, 1995), we can now embed pedagogical strategies into the very fabric
of the environment. Since learning arises from adaptation to the environ-
ment, it can be guided by the behavior of the environment itself. 

How adaptation occurs can be considered from several perspectives,
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from traditional explanations of conceptual change, to descriptions based on
changes to connections among neurons. Holland’s account of adaptation
through the action of genetic algorithms is useful, in that it applies both to
people and to machine-constructed agents and environments, and in that it
can account for the creation and evolution of rules we observe students dis-
covering and using.

Finally, this system-theoretic view of learning opens the door to quanti-
tative descriptions of adaptation and to building mathematical models of
learning that can be simulated and tested. Connectionist models (Rumelhart
& McLelland, 1986) and dynamical system theory (Abraham & Shaw, 1992;
Port & Van Gelder, 1995) offer techniques for describing and simulating
adaptation to learning environments in all their complexity and, dynamical-
ly, in real time.

In conclusion, it is important for educational researchers to take these
views of learning and cognition seriously, even though they are, as yet, not
fully formed. We have spent too many years away from studying learning
directly. We have traded rigorous, quantitative science for methodologies,
poorly adapted from anthropology and sociology (and even from literary
criticism), which are appropriate only for the study of things that are periph-
erally relevant to learning. Our educational techniques and technologies are
developing at an ever-increasing pace. Our research and its application must
keep up.
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